E-Book, Englisch, 550 Seiten
Sherman Business Intelligence Guidebook
1. Auflage 2014
ISBN: 978-0-12-411528-6
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark
From Data Integration to Analytics
E-Book, Englisch, 550 Seiten
ISBN: 978-0-12-411528-6
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark
Rick Sherman is the founder of Athena IT Solutions, which provides consulting, training and vendor services for business intelligence, analytics, data integration and data warehousing. He is an adjunct faculty member at Northeastern University's Graduate School of Engineering and is a frequent contributor to industry publications, events, and webinars.
Autoren/Hrsg.
Weitere Infos & Material
1;Front
Cover;1
2;Business Intelligence
Guidebook;4
3;Copyright;5
4;Contents;6
5;Foreword;18
6;How to Use This Book;20
6.1;CHAPTER SUMMARIES;20
7;Acknowledgments;24
8;PART I -
CONCEPTS AND
CONTEXT;26
8.1;CHAPTER 1
- THE BUSINESS DEMAND FOR DATA, INFORMATION, AND ANALYTICS;28
8.1.1;JUST ONE WORD: DATA;28
8.1.2;WELCOME TO THE DATA DELUGE;29
8.1.3;TAMING THE ANALYTICS DELUGE;31
8.1.4;TOO MUCH DATA, TOO LITTLE INFORMATION;33
8.1.5;DATA CAPTURE VERSUS INFORMATION ANALYSIS;35
8.1.6;THE FIVE CS OF DATA;37
8.1.7;COMMON TERMINOLOGY FROM OUR PERSPECTIVE;39
8.1.8;REFERENCES;44
9;PART II -
BUSINESS AND
TECHNICAL NEEDS;46
9.1;CHAPTER 2 - JUSTIFYING BI: BUILDING THE BUSINESS AND TECHNICAL CASE;48
9.1.1;WHY JUSTIFICATION IS NEEDED;48
9.1.2;BUILDING THE BUSINESS CASE;49
9.1.3;BUILDING THE TECHNICAL CASE;53
9.1.4;ASSESSING READINESS;57
9.1.5;CREATING A BI ROAD MAP;60
9.1.6;DEVELOPING SCOPE, PRELIMINARY PLAN, AND BUDGET;60
9.1.7;OBTAINING APPROVAL;65
9.1.8;COMMON JUSTIFICATION PITFALLS;65
9.2;CHAPTER 3 - DEFINING REQUIREMENTS—BUSINESS, DATA AND QUALITY;68
9.2.1;THE PURPOSE OF DEFINING REQUIREMENTS;68
9.2.2;GOALS;69
9.2.3;DELIVERABLES;70
9.2.4;ROLES;72
9.2.5;DEFINING REQUIREMENTS WORKFLOW;74
9.2.6;INTERVIEWING;81
9.2.7;DOCUMENTING REQUIREMENTS;85
10;PART III -
ARCHITECTURALFRAMEWORK;88
10.1;CHAPTER 4 - ARCHITECTURE FRAMEWORK;90
10.1.1;THE NEED FOR ARCHITECTURAL BLUEPRINTS;90
10.1.2;ARCHITECTURAL FRAMEWORK;91
10.1.3;INFORMATION ARCHITECTURE;92
10.1.4;DATA ARCHITECTURE;93
10.1.5;TECHNICAL ARCHITECTURE;97
10.1.6;PRODUCT ARCHITECTURE;103
10.1.7;METADATA;103
10.1.8;SECURITY AND PRIVACY;105
10.1.9;AVOIDING ACCIDENTS WITH ARCHITECTURAL PLANNING;106
10.1.10;DO NOT OBSESS OVER THE ARCHITECTURE;108
10.2;CHAPTER 5 - INFORMATION ARCHITECTURE;110
10.2.1;THE PURPOSE OF AN INFORMATION ARCHITECTURE;110
10.2.2;DATA INTEGRATION FRAMEWORK;111
10.2.3;DIF INFORMATION ARCHITECTURE;112
10.2.4;OPERATIONAL BI VERSUS ANALYTICAL BI;125
10.2.5;MASTER DATA MANAGEMENT;128
10.3;CHAPTER 6 - DATA ARCHITECTURE;132
10.3.1;THE PURPOSE OF A DATA ARCHITECTURE;132
10.3.2;HISTORY;133
10.3.3;DATA ARCHITECTURAL CHOICES;143
10.3.4;DATA INTEGRATION WORKFLOW;153
10.3.5;DATA WORKFLOW—RISE OF EDW AGAIN;161
10.3.6;OPERATIONAL DATA STORE;162
10.3.7;REFERENCES;167
10.4;CHAPTER 7 - TECHNOLOGY & PRODUCT ARCHITECTURES;168
10.4.1;WHERE ARE THE PRODUCT AND VENDOR NAMES?;168
10.4.2;EVOLUTION NOT REVOLUTION;169
10.4.3;TECHNOLOGY ARCHITECTURE;172
10.4.4;PRODUCT AND TECHNOLOGY EVALUATIONS;190
11;PART IV -
DATA DESIGN;196
11.1;CHAPTER 8 - FOUNDATIONAL DATA MODELING;198
11.1.1;THE PURPOSE OF DATA MODELING;198
11.1.2;DEFINITIONS—THE DIFFERENCE BETWEEN A DATA MODEL AND DATA MODELING;198
11.1.3;THREE LEVELS OF DATA MODELS;199
11.1.4;DATA MODELING WORKFLOW;202
11.1.5;WHERE DATA MODELS ARE USED;203
11.1.6;ENTITY-RELATIONSHIP (ER) MODELING OVERVIEW;204
11.1.7;NORMALIZATION;214
11.1.8;LIMITS AND PURPOSE OF NORMALIZATION;219
11.2;CHAPTER 9 - DIMENSIONAL MODELING;222
11.2.1;INTRODUCTION TO DIMENSIONAL MODELING;222
11.2.2;HIGH-LEVEL VIEW OF A DIMENSIONAL MODEL;223
11.2.3;FACTS;223
11.2.4;DIMENSIONS;228
11.2.5;SCHEMAS;233
11.2.6;ENTITY RELATIONSHIP VERSUS DIMENSIONAL MODELING;238
11.2.7;PURPOSE OF DIMENSIONAL MODELING;241
11.2.8;FACT TABLES;243
11.2.9;ACHIEVING CONSISTENCY;245
11.2.10;ADVANCED DIMENSIONS AND FACTS;246
11.2.11;DIMENSIONAL MODELING RECAP;259
11.3;CHAPTER 10 - BUSINESS INTELLIGENCE DIMENSIONAL MODELING;262
11.3.1;INTRODUCTION;262
11.3.2;HIERARCHIES;262
11.3.3;OUTRIGGER TABLES;269
11.3.4;SLOWLY CHANGING DIMENSIONS;270
11.3.5;CAUSAL DIMENSION;287
11.3.6;MULTIVALUED DIMENSIONS;288
11.3.7;JUNK DIMENSIONS;290
11.3.8;VALUE BAND REPORTING;293
11.3.9;HETEROGENEOUS PRODUCTS;294
11.3.10;ALTERNATE DIMENSIONS;295
11.3.11;TOO FEW OR TOO MANY DIMENSIONS;297
12;PART V -
DATA INTEGRATIONDESIGN;298
12.1;CHAPTER 11 - DATA INTEGRATION DESIGN AND DEVELOPMENT;300
12.1.1;GETTING STARTED WITH DATA INTEGRATION;300
12.1.2;DATA INTEGRATION ARCHITECTURE;302
12.1.3;DATA INTEGRATION REQUIREMENTS;305
12.1.4;DATA INTEGRATION DESIGN;310
12.1.5;DATA INTEGRATION STANDARDS;315
12.1.6;LOADING HISTORICAL DATA;320
12.1.7;DATA INTEGRATION PROTOTYPING;323
12.1.8;DATA INTEGRATION TESTING;323
12.2;CHAPTER 12 - DATA INTEGRATION PROCESSES;326
12.2.1;INTRODUCTION: MANUAL CODING VERSUS TOOL-BASED DATA INTEGRATION;326
12.2.2;DATA INTEGRATION SERVICES;334
13;PART VI -
BUSINESSINTELLIGENCEDESIGN;360
13.1;CHAPTER 13 - BUSINESS INTELLIGENCE APPLICATIONS;362
13.1.1;BI CONTENT SPECIFICATIONS;362
13.1.2;REVISE BI APPLICATIONS LIST;364
13.1.3;BI PERSONAS;365
13.1.4;BI DESIGN LAYOUT—BEST PRACTICES;368
13.1.5;DATA DESIGN FOR SELF-SERVICE BI;373
13.1.6;MATCHING TYPES OF ANALYSIS TO VISUALIZATIONS;376
13.2;CHAPTER 14 - BI DESIGN AND DEVELOPMENT;384
13.2.1;BI DESIGN;384
13.2.2;BI DEVELOPMENT;392
13.2.3;BI APPLICATION TESTING;397
13.3;CHAPTER 15 - ADVANCED ANALYTICS;400
13.3.1;ADVANCED ANALYTICS OVERVIEW AND BACKGROUND;400
13.3.2;PREDICTIVE ANALYTICS AND DATA MINING;402
13.3.3;ANALYTICAL SANDBOXES AND HUBS;408
13.3.4;BIG DATA ANALYTICS;420
13.3.5;DATA VISUALIZATION;426
13.3.6;REFERENCE;427
13.4;CHAPTER 16 - DATA SHADOW SYSTEMS;428
13.4.1;THE DATA SHADOW PROBLEM;428
13.4.2;ARE THERE DATA SHADOW SYSTEMS IN YOUR ORGANIZATION?;430
13.4.3;WHAT KIND OF DATA SHADOW SYSTEMS DO YOU HAVE?;431
13.4.4;DATA SHADOW SYSTEM TRIAGE;432
13.4.5;THE EVOLUTION OF DATA SHADOW SYSTEMS IN AN ORGANIZATION;433
13.4.6;DAMAGES CAUSED BY DATA SHADOW SYSTEMS;437
13.4.7;THE BENEFITS OF DATA SHADOW SYSTEMS;438
13.4.8;MOVING BEYOND DATA SHADOW SYSTEMS;439
13.4.9;MISGUIDED ATTEMPTS TO REPLACE DATA SHADOW SYSTEMS;442
13.4.10;RENOVATING DATA SHADOW SYSTEMS;443
14;PART VII -
ORGANIZATION;448
14.1;CHAPTER 17 - PEOPLE, PROCESS AND POLITICS;450
14.1.1;THE TECHNOLOGY TRAP;450
14.1.2;THE BUSINESS AND IT RELATIONSHIP;452
14.1.3;ROLES AND RESPONSIBILITIES;454
14.1.4;BUILDING THE BI TEAM;456
14.1.5;TRAINING;466
14.1.6;DATA GOVERNANCE;469
14.2;CHAPTER 18 - PROJECT MANAGEMENT;474
14.2.1;THE ROLE OF PROJECT MANAGEMENT;474
14.2.2;ESTABLISHING A BI PROGRAM;475
14.2.3;BI ASSESSMENT;485
14.2.4;WORK BREAKDOWN STRUCTURE;490
14.2.5;BI ARCHITECTURAL PLAN;495
14.2.6;BI PROJECTS ARE DIFFERENT;497
14.2.7;PROJECT METHODOLOGIES;498
14.2.8;BI PROJECT PHASES;504
14.2.9;BI PROJECT SCHEDULE;509
14.3;CHAPTER 19 - CENTERS OF EXCELLENCE;518
14.3.1;THE PURPOSE OF CENTERS OF EXCELLENCE;518
14.3.2;BI COE;519
14.3.3;DATA INTEGRATION CENTER OF EXCELLENCE;526
14.3.4;ENABLING A DATA-DRIVEN ENTERPRISE;536
14.3.5;REFERENCE;537
15;Index;538
The Business Demand for Data, Information, and Analytics
Abstract
In the business world, knowledge is not just power. It is the lifeblood of a thriving enterprise. Knowledge comes from information, and that, in turn, comes from data. Many enterprises are overwhelmed by the deluge of data, which they are receiving from all directions. They are wondering if they can handle Big Data—with its expanding volume, variety, and velocity. There is a big difference between raw data, which by itself is not useful, and actionable information, which business people can use with confidence to make decisions. Data must to be transformed to make it clean, consistent, conformed, current, and comprehensive—the five Cs of data. It is up to a Business Intelligence (BI) team to gather and manage the data to empower the company’s business groups with the information they need to gain knowledge—knowledge that helps them make informed decisions about every step the company takes. While there are attempts to circumvent or replace BI with operational systems, there really is no good substitute for true BI. Operational systems may excel at data capture, but BI excels at information analysis.
Keywords
Big Data; Data; Data 5 Cs; Data capture; Data variety; Data velocity; Data volume; Information; Information analysis; Operational BI
Just One Word: Data
“I just want to say one word to you. Just one word… Are you listening? … Plastics. There’s a great future in plastics.”
Mr. McGuire in the 1967 movie The Graduate.