Shiraishi / Sugiura / Matsuda | Pairwise Multiple Comparisons | E-Book | sack.de
E-Book

E-Book, Englisch, 102 Seiten, eBook

Reihe: JSS Research Series in Statistics

Shiraishi / Sugiura / Matsuda Pairwise Multiple Comparisons

Theory and Computation
1. Auflage 2019
ISBN: 978-981-15-0066-4
Verlag: Springer Singapore
Format: PDF
Kopierschutz: 1 - PDF Watermark

Theory and Computation

E-Book, Englisch, 102 Seiten, eBook

Reihe: JSS Research Series in Statistics

ISBN: 978-981-15-0066-4
Verlag: Springer Singapore
Format: PDF
Kopierschutz: 1 - PDF Watermark



This book focuses on all-pairwise multiple comparisons of means in multi-sample models, introducing closed testing procedures based on maximum absolute values of some two-sample t-test statistics and on F-test statistics in homoscedastic multi-sample models. It shows that (1) the multi-step procedures are more powerful than single-step procedures and the Ryan/Einot–Gabriel/Welsh tests, and (2) the confidence regions induced by the multi-step procedures are equivalent to simultaneous confidence intervals. Next, it describes the multi-step test procedure in heteroscedastic multi-sample models, which is superior to the single-step Games–Howell procedure. In the context of simple ordered restrictions of means, the authors also discuss closed testing procedures based on maximum values of two-sample one-sided t-test statistics and based on Bartholomew's statistics. Furthermore, the book presents distribution-free procedures and describes simulation studies performed under the null hypothesis and some alternative hypotheses. Although single-step multiple comparison procedures are generally used, the closed testing procedures described are more powerful than the single-step procedures. In order to execute the multiple comparison procedures, the upper 100a percentiles of the complicated distributions are required. Classical integral formulas such as Simpson's rule and the Gaussian rule have been used for the calculation of the integral transform that appears in statistical calculations. However, these formulas are not effective for the complicated distribution. As such, the authors introduce the sinc method, which is optimal in terms of accuracy and computational cost.
Shiraishi / Sugiura / Matsuda Pairwise Multiple Comparisons jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


1.  All-Pairwise Comparisons in Homoscedastic Multi-Sample Models.- 2.  Multiple Comparisons in Heteroscedastic Multi-Sample Models.- 3. Multiple Comparison Procedures under Simple Order Restrictions.- 4.:  Nonparametric Procedures Based on Rank Statistics.- 5. Comparing the Simulated Power of Multiple Comparison Tests.- 6. Application of Multiple Comparison Tests to Real Data.- 7. Computation of Distribution Functions for Statistics under Simple Ordered Restrictions.- 8. Related Topics.- Index.


Taka-aki Shiraishi, Nanzan UniversityHiroshi Sugiura, Nanzan UniversityShin-ichi Matsuda, Nanzan University



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.