Buch, Englisch, 464 Seiten, Format (B × H): 161 mm x 240 mm, Gewicht: 845 g
Buch, Englisch, 464 Seiten, Format (B × H): 161 mm x 240 mm, Gewicht: 845 g
ISBN: 978-0-19-537222-9
Verlag: ACADEMIC
Hilbert's Programs & Beyond presents the foundational work of David Hilbert in a sequence of thematically organized essays. They first trace the roots of Hilbert's work to the radical transformation of mathematics in the 19th century and bring out his pivotal role in creating mathematical logic and proof theory. They then analyze techniques and results of "classical" proof theory as well as their dramatic expansion in modern proof theory. This
intellectual experience finally opens horizons for reflection on the nature of mathematics in the 21st century: Sieg articulates his position of reductive structuralism and explores mathematical capacities via computational models.
Zielgruppe
Philosophers of mathematics; historians of modern mathematics and logic; researchers in philosophical and mathematical logic, but also in computer science and artificial intelligence.
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik EDV | Informatik EDV & Informatik Allgemein EDV & Informatik: Geschichte
- Mathematik | Informatik Mathematik Mathematik Allgemein Geschichte der Mathematik
- Geisteswissenschaften Philosophie Philosophie der Mathematik, Philosophie der Physik
- Interdisziplinäres Wissenschaften Wissenschaften: Allgemeines Geschichte der Naturwissenschaften, Formalen Wissenschaften & Technik
- Mathematik | Informatik Mathematik Mathematik Allgemein Philosophie der Mathematik
Weitere Infos & Material
Introduction
In.1: A perspective on Hilbert's Programs
In.2: Milestones
I. Mathematical roots
I.3: Dedekind's analysis of number
I.4: Methods for real arithmetic
I.5: Hilbert's programs: 1917-1922
II. Analyses
Historical
II.1: Finitist proof theory: 1922-1934
II.2: After Königsberg
II.3: In the shadow of incompleteness
II.4: Gödel at Zilsel's
II.5: Hilbert and Bernays: 1939
Systematical
II.6: Foundations for analysis and proof theory
II.7: Reductions of theories for analysis
II.8: Hilbert's program sixty years later
II.9: On reverse mathematics
II.10: Relative consistency and accessible domains
III. Philosophical horizons
III.1: Aspects of mathematical experience
III.2: Beyond Hilbert's reach?
III.3: Searching for proofs




