Silvestre | Advanced Computational Nanomechanics | Buch | 978-1-119-06893-8 | sack.de

Buch, Englisch, 440 Seiten, Format (B × H): 170 mm x 244 mm, Gewicht: 612 g

Reihe: Microsystem and Nanotechnology Series

Silvestre

Advanced Computational Nanomechanics


1. Auflage 2016
ISBN: 978-1-119-06893-8
Verlag: Wiley

Buch, Englisch, 440 Seiten, Format (B × H): 170 mm x 244 mm, Gewicht: 612 g

Reihe: Microsystem and Nanotechnology Series

ISBN: 978-1-119-06893-8
Verlag: Wiley


Contains the latest research advances in computational nanomechanics in one comprehensive volume
- Covers computational tools used to simulate and analyse nanostructures
- Includes contributions from leading researchers
- Covers of new methodologies/tools applied to computational nanomechanics whilst also giving readers the new findings on carbon-based aggregates (graphene, carbon-nanotubes, nanocomposites)
- Evaluates the impact of nanoscale phenomena in materials

Silvestre Advanced Computational Nanomechanics jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


List of Contributors xi

Series Preface xiii

Preface xv

1 Thermal Conductivity of Graphene and Its Polymer Nanocomposites: A Review 1
Yingyan Zhang, Yu Wang, Chien Ming Wang and Yuantong Gu

1.1 Introduction 1

1.2 Graphene 1

1.2.1 Introduction of Graphene 1

1.2.2 Properties of Graphene 6

1.2.3 Thermal Conductivity of Graphene 7

1.3 Thermal Conductivity of Graphene–Polymer Nanocomposites 9

1.3.1 Measurement of Thermal Conductivity of Nanocomposites 9

1.3.2 Modelling of Thermal Conductivity of Nanocomposites 9

1.3.3 Progress and Challenge for Graphene–Polymer Nanocomposites 14

1.3.4 Interfacial Thermal Resistance 16

1.3.5 Approaches for Reduction of Interfacial Thermal Resistance 19

1.4 Concluding Remarks 22

References 22

2 Mechanics of CNT Network Materials 29
Mesut Kirca and Albert C. To

2.1 Introduction 29

2.1.1 Types of CNT Network Materials 30

2.1.2 Synthesis of CNT Network Materials 31

2.1.3 Applications 35

2.2 Experimental Studies on Mechanical Characterization of CNT Network Materials 39

2.2.1 Non-covalent CNT Network Materials 40

2.2.2 Covalently Bonded CNT Network Materials 45

2.3 Theoretical Approaches Toward CNT Network Modeling 48

2.3.1 Ordered CNT Networks 48

2.3.2 Randomly Organized CNT Networks 50

2.4 Molecular Dynamics Study of Heat-Welded CNT Network Materials 55

2.4.1 A Stochastic Algorithm for Modeling Heat-Welded Random CNT Network 56

2.4.2 Tensile Behavior of Heat-Welded CNT Networks 60

References 65

3 Mechanics of Helical Carbon Nanomaterials 71
Hiroyuki Shima and Yoshiyuki Suda

3.1 Introduction 71

3.1.1 Historical Background 71

3.1.2 Classification: Helical “Tube” or “Fiber”? 73

3.1.3 Fabrication and Characterization 74

3.2 Theory of HN-Tubes 76

3.2.1 Microscopic Model 76

3.2.2 Elastic Elongation 79

3.2.3 Giant Stretchability 80

3.2.4 Thermal Transport 82

3.3 Experiment of HN-Fibers 84

3.3.1 Axial Elongation 84

3.3.2 Axial Compression 87

3.3.3 Resonant Vibration 89

3.3.4 Fracture Measurement 92

3.4 Perspective and Possible Applications 93

3.4.1 Reinforcement Fiber for Composites 93

3.4.2 Morphology Control in Synthesis 93

References 94

4 Computational Nanomechanics Investigation Techniques 99
Ghasem Ghadyani and Moones Rahmandoust

4.1 Introduction 99

4.2 Fundamentals of the Nanomechanics 100

4.2.1 Molecular Mechanics 101

4.2.2 Newtonian Mechanics 101

4.2.3 Lagrangian Equations of Motion 102

4.2.4 Hamilton Equations of a G-Space 104

4.3 Molecular Dynamics Method 106

4.3.1 Interatomic Potentials 106

4.3.2 Link Between Molecular Dynamics and Quantum Mechanics 112

4.3.3 Limitations of Molecular Dynamics Simulations 114

4.4 Tight Binding Method 115

4.5 Hartree–Fock and Related Methods 116

4.6 Density Functional Theory 118

4.7 Multiscale Simulation Methods 120

4.8 Conclusion 120

References 120

5 Probabilistic Strength Theory of Carbon Nanotubes and Fibers 123
Xi F. Xu and Irene J. Beyerlein

5.1 Introduction 123

5.2 A Probabilistic Strength Theory of CNTs 124

5.2.1 Asymptotic Strength Distribution of CNTs 124

5.2.2 Nonasymptotic Strength Distribution of CNTs 127

5.2.3 Incorporation of Physical and Virtual Testing Data 130

5.3 Strength Upscaling from CNTs to CNT Fibers 135

5.3.1 A Local Load Sharing Model 136

5.3.2 Interpretation of CNT Bundle Tensile Testing 139

5.3.3 Strength Upscaling Across CNT-Bundle-Fiber Scales 141

5.4 Conclusion 145

References 145

6 Numerical Nanomechanics of Perfect and Defective Hetero-junction CNTs 147
Ali Ghavamian, Moones Rahmandoust and Andreas Öchsner

6.1 Introduction 147

6.1.1 Literature Review: Mechanical Properties of Homogeneous CNTs 147

6.1.2 Literature Review: Mechanical Properties of Hetero-junction CNTs 150

6.2 Theory and Simulation 152

6.2.1 Atomic Geometry and Finite Element Simulation of Homogeneous CNTs 152

6.2.2 Atomic Geometry and Finite Element Simulation of Hetero-junction CNTs 153

6.2.3 Finite Element Simulation of Atomically Defective Hetero-junction CNTs 155

6.3 Results and Discussion 156

6.3.1 Linear Elastic Properties of Perfect Hetero-junction CNTs 156

6.3.2 Linear Elastic Properties of Atomically Defective Hetero-junction CNTs 162

6.4 Conclusion 164

References 171

7 A Methodology for the Prediction of Fracture Properties in Polymer Nanocomposites 175
Samit Roy and Avinash Akepati

7.1 Introduction 175

7.2 Literature Review 175

7.3 Atomistic J-Integral Evaluation Methodology 176

7.4 Atomistic J-Integral at Finite Temperature 181

7.5 Cohesive Contour-based Approach for J-Integral 184

7.6 Numerical Evaluation of Atomistic J-Integral 185

7.7 Atomistic J-Integral Calculation for a Center-Cracked Nanographene Platelet 187

7.8 Atomistic J-Integral Calculation for a Center-Cracked Nanographene Platelet at Finite Temperature (T = 300 K) 190

7.9 Atomistic J-Integral Calculation for a Center-Cracked Nanographene Platelet Using ReaxFF 192

7.10 Atomistic J-Integral Calculation for a Center-Cracked EPON 862 Model 194

7.11 Conclusions and Future Work 197

Acknowledgment 198

References 199

8 Mechanical Characterization of 2D Nanomaterials and Composites 201
Ruth E. Roman, Nicola M. Pugno and Steven W. Cranford

8.1 Discovering 2D in a 3D World 201

8.2 2D Nanostructures 203

8.2.1 Graphene 203

8.2.2 Graphynes and Graphene Allotropes 204

8.2.3 Silicene 205

8.2.4 Boron Nitride 206

8.2.5 Molybdenum Disulfide 207

8.2.6 Germanene, Stanene, and Phosphorene 208

8.3 Mechanical Assays 210

8.3.1 Experimental 210

8.3.2 Computational 211

8.4 Mechanical Properties and Characterization 212

8.4.1 Defining Stress 213

8.4.2 Uniaxial Stress, Plane Stress, and Plane Strain 214

8.4.3 Stiffness 216

8.4.4 Effect of Bond Density 218

8.4.5 Bending Rigidity 219

8.4.6 Adhesion 222

8.4.7 Self-Adhesion and Folding 225

8.5 Failure 227

8.5.1 Quantized Fracture Mechanics 228

8.5.2 Nanoscale Weibull Statistics 231

8.6 Multilayers and Composites 233

8.7 Conclusion 236

Acknowledgment 236

References 237

9 The Effect of Chirality on the Mechanical Properties of Defective Carbon Nanotubes 243
Keka Talukdar

9.1 Introduction 243

9.2 Carbon Nanotubes, Their Molecular Structure and Bonding 245

9.2.1 Diameter and Chiral Angle 245

9.2.2 Bonding Speciality in CNTs 246

9.2.3 Defects in CNT Structure 246

9.3 Methods and Modelling 247

9.3.1 Simulation Method 247

9.3.2 Berendsen Thermostat 248

9.3.3 Second-Generation REBO Potential 249

9.3.4 C–C Non-bonding Potential 251

9.3.5 Method of Calculation 251

9.4 Results and Discussions 251

9.4.1 Results for SWCNTs 251

9.4.2 Results for SWCNT Bundle and MWCNTs 255

9.4.3 Chirality Dependence 260

9.5 Conclusions 262

References 263

10 Mechanics of Thermal Transport in Mass-Disordered Nanostructures 265
Ganesh Balasubramanian

10.1 Introduction 265

10.2 Equilibrium Molecular Dynamics to Understand Vibrational Spectra 266

10.3 Nonequilibrium Molecular Dynamics for Property Prediction 268

10.4 Quantum Mechanical Calculations for Phonon Dispersion Features 270

10.5 Mean-Field Approximation Model for Binary Mixtures 272

10.6 Materials Informatics for Design of Mass-Disordered Structures 275

10.7 Future Directions in Mass-Disordered Nanomaterials 278

References 279

11 Thermal Boundary Resistance Effects in Carbon Nanotube Composites 281
Dimitrios V. Papavassiliou, Khoa Bui and Huong Nguyen

11.1 Introduction 281

11.2 Background 282

11.3 Techniques to Enhance the Thermal Conductivity of CNT Nanocomposites 285

11.4 Dual-Walled CNTs and Composites with CNTs Encapsulated in Silica 286

11.4.1 Simulation Setup 287

11.4.2 Results 289

11.5 Discussion and Conclusions 291

Acknowledgment 291

References 291

Index 295


Nuno Silvestre is currently Associate Professor at the Department of Mechanical Engineering of IST - University of Lisbon, Portugal. He holds a PhD degree in Civil Engineering and has more than 20 years of experience in teaching, researching and consulting. His research interests include Nanomechanics, Simulation at Nanoscale, Stability of Thin-Walled Structures, Nonlinear Solid Mechanics and Computational Analysis of Materials and Structures. He has about 100 articles in peer reviewed journals and about 200 communications in international conferences. Professor Silvestre coordinated and participated in several funded R&D projects, supervised several PhD and MSc students and received many awards from international and national institutions in recognition for his scientific achievements. He is also an esteemed member of several scientific and technical committees, and member of 7 editorial boards of international journals.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.