Singh / Kukreja / Gandomani | Machine Learning for Edge Computing | Buch | 978-0-367-69432-6 | sack.de

Buch, Englisch, 200 Seiten, Format (B × H): 161 mm x 240 mm, Gewicht: 470 g

Reihe: Edge AI in Future Computing

Singh / Kukreja / Gandomani

Machine Learning for Edge Computing

Frameworks, Patterns and Best Practices
1. Auflage 2022
ISBN: 978-0-367-69432-6
Verlag: CRC Press

Frameworks, Patterns and Best Practices

Buch, Englisch, 200 Seiten, Format (B × H): 161 mm x 240 mm, Gewicht: 470 g

Reihe: Edge AI in Future Computing

ISBN: 978-0-367-69432-6
Verlag: CRC Press


This book divides edge intelligence into AI for edge (intelligence-enabled edge computing) and AI on edge (artificial intelligence on edge). It focuses on providing optimal solutions to the key concerns in edge computing through effective AI technologies, and it discusses how to build AI models, i.e., model training and inference, on edge. This book provides insights into this new inter-disciplinary field of edge computing from a broader vision and perspective. The authors discuss machine learning algorithms for edge computing as well as the future needs and potential of the technology. The authors also explain the core concepts, frameworks, patterns, and research roadmap, which offer the necessary background for potential future research programs in edge intelligence.

The target audience of this book includes academics, research scholars, industrial experts, scientists, and postgraduate students who are working in the field of Internet of Things (IoT) or edge computing and would like to add machine learning to enhance the capabilities of their work.

This book explores the following topics:

- Edge computing, hardware for edge computing AI, and edge virtualization techniques

- Edge intelligence and deep learning applications, training, and optimization

- Machine learning algorithms used for edge computing

- Reviews AI on IoT Discusses future edge computing needs

Amitoj Singh is an Associate Professor at the School of Sciences of Emerging Technologies, Jagat Guru Nanak Dev Punjab State Open University, Punjab, India.

Vinay Kukreja is a Professor at the Chitkara Institute of Engineering and Technology, Chitkara University, Punjab, India.

Taghi Javdani Gandomani is an Assistant Professor at Shahrekord University, Shahrekord, Iran.

Singh / Kukreja / Gandomani Machine Learning for Edge Computing jetzt bestellen!

Zielgruppe


Academic

Weitere Infos & Material


1. Fog Computing And Its Security Challenges. 2. Machine Learning for Edge Computing: Frameworks, Patterns and Best Practices. 3. Tea Vending Machine from extracts of Natural Tea leaves and other ingredients: IoT and Artificial Intelligence Enabled. 4. Recent Trends in OCR Systems: A Review. 5. A Novel Approach for Data Security using DNA Cryptography with Artificial Bee Colony Algorithm in Cloud Computing. 6. Various Techniques for Consensus Mechanism in Blockchain. 7. IoT inspired Smart Healthcare Service for diagnosing remote patients with Diabetes. 8. Segmentation of Deep Learning Models. 9. Alzheimer’s disease Classification. 10. Deep learning applications on Edge computing. 11. Designing an Efficient Network based Intrusion Detection System using Artificial Bee Colony and ADASYN oversampling approach.


Amitoj Singh is working as Assistant Professor in the department of Computational Sciences, MRSPTU, Bathinda, Punjab, India.

Vinay Kukreja is working as an Associate professor at Chitkara University, Punjab, India.

Taghi Javdani Gandomani is an Assistant Professor at Shahrekord University, Shahrekord, Iran.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.