Sinha | Engineering Physics of High-Temperature Materials | Buch | 978-1-119-42048-4 | sack.de

Buch, Englisch, 432 Seiten, Format (B × H): 218 mm x 278 mm, Gewicht: 1338 g

Sinha

Engineering Physics of High-Temperature Materials

Metals, Ice, Rocks, and Ceramics
1. Auflage 2022
ISBN: 978-1-119-42048-4
Verlag: Wiley

Metals, Ice, Rocks, and Ceramics

Buch, Englisch, 432 Seiten, Format (B × H): 218 mm x 278 mm, Gewicht: 1338 g

ISBN: 978-1-119-42048-4
Verlag: Wiley


ENGINEERING PHYSICS OF HIGH-TEMPERATURE MATERIALS

Discover a comprehensive exploration of high temperature materials written by leading materials scientists

In Engineering Physics of High-Temperature Materials: Metals, Ice, Rocks, and Ceramics distinguished researchers and authors Nirmal K. Sinha and Shoma Sinha deliver a rigorous and wide-ranging discussion of the behavior of different materials at high temperatures. The book discusses a variety of physical phenomena, from plate tectonics and polar sea ice to ice-age and intraglacial depression and the postglacial rebound of Earth’s crust, stress relaxation at high temperatures, and microstructure and crack-enhanced Elasto Delayed Elastic Viscous (EDEV) models. At a very high level, Engineering Physics of High-Temperature Materials (EPHTM) takes a multidisciplinary view of the behavior of materials at temperatures close to their melting point. The volume particularly focuses on a powerful model called the Elasto-Delayed-Elastic-Viscous (EDEV) model that can be used to study a variety of inorganic materials ranging from snow and ice, metals, including complex gas-turbine engine materials, as well as natural rocks and earth formations (tectonic processes). It demonstrates how knowledge gained in one field of study can have a strong impact on other fields.

Engineering Physics of High-Temperature Materials will be of interest to a broad range of specialists, including earth scientists, volcanologists, cryospheric and interdisciplinary climate scientists, and solid-earth geophysicists. The book demonstrates that apparently dissimilar polycrystalline materials, including metals, alloys, ice, rocks, ceramics, and glassy materials, all behave in a surprisingly similar way at high temperatures. This similarity makes the information contained in the book valuable to all manner of physical scientists.

Readers will also benefit from the inclusion of: - A thorough introduction to the importance of a unified model of high temperature material behavior, including high temperature deformation and the strength of materials
- An exploration of the nature of crystalline substances for engineering applications, including basic materials classification, solid state materials, and general physical principles
- Discussions of forensic physical materialogy and test techniques and test systems
- Examinations of creep fundamentals, including rheology and rheological terminology, and phenomenological creep failure models

Perfect for materials scientists, metallurgists, and glaciologists, Engineering Physics of High-Temperature Materials: Metals, Ice, Rocks, and Ceramics will also earn a place in the libraries of specialists in the nuclear, chemical, and aerospace industries with an interest in the physics and engineering of high-temperature materials.

Sinha Engineering Physics of High-Temperature Materials jetzt bestellen!

Weitere Infos & Material


Acknowledgments xiii

Engineering Physics of High-Temperature Materials xv

1 Importance of a Unified Model of High-Temperature Material Behavior 1

1.1 The World’s Kitchens – The Innovation Centers for Materials Development 1

1.1.1 Defining High Temperature Based on Cracking Characteristics 4

1.2 Trinities of Earth’s Structure and Cryosphere 7

1.2.1 Trinity of Earth’s Structure 7

1.2.2 Trinity of Earth’s Cryospheric Regions 7

1.3 Earth’s Natural Materials (Rocks and Ice) 8

1.3.1 Ice: A High-Temperature Material 9

1.3.2 Ice: An Analog to Understand High-Temperature Properties of Solids 10

1.4 Rationalization of Temperature: Low and High 12

1.5 Deglaciation and Earth’s Response 12

1.6 High-Temperature Deformation: Time Dependency 13

1.6.1 Issues with Terminology: Elastic, Plastic, and Viscous Deformation 13

1.6.2 Elastic, Delayed Elastic, and Viscous Deformation 13

1.7 Strength of Materials 16

1.8 Paradigm Shifts 18

1.8.1 Paradigm Shift in Experimental Approach 18

1.8.2 Breaking Tradition for Creep Testing 19

1.8.3 Exemplification the Novel Approach 19

1.8.4 Romanticism for a Constant-Structure Creep Test 23

References 25

2 Nature of Crystalline Substances for Engineering Applications 29

2.1 Basic Materials Classification 30

2.2 Solid-state Materials 31

2.2.1 Structure of Crystalline Solids 31

2.2.2 Structure of Amorphous Solids 33

2.3 General Physical Principles 34

2.3.1 Solidification of Materials 34

2.3.2 Phase Diagrams 35

2.3.3 Crystal Imperfections 37

2.4 Glass and Glassy Phase 40

2.4.1 Glass Transition 40

2.4.2 Structure of Real Glass 41

2.4.3 Composition of Standard Glass 41

2.4.4 Thermal Tempering 42

2.4.5 Material Characteristics 43

2.5 Rocks: The Most Abundant Natural Polycrystalline Material 44

2.5.1 Sedimentary Rocks 44

2.5.2 Metamorphic Rocks 45

2.5.3 Igneous Rocks 45

2.6 Ice: The Second Most Abundant Natural Polycrystalline Material 45

2.7 Ceramics 47

2.8 Metals and Alloys 48

2.8.1 Iron-base Alloys 48

2.8.2 Nickel-base Alloys 50

2.8.3 Titanium-base Alloys 53

2.8.4 Mechanical Metallurgy 54

2.9 Classification of Solids Based on Mechanical Response at High Temperatures 55

References 56

3 Forensic Physical Materialogy 59

3.1 Introduction 59

3.1.1 Material Characterization 60

3.2 Polycrystalline Solids and Crystal Defects 61

3.2.1 Etch-Pitting Technique – A Powerful Tool 63

3.3 Structure and Texture of Natural Hexagonal Ice, Ih 67

3.4 Section Preparation for Microstructural Analysis 69

3.4.1 Thin Sectioning of Ice 69

3.4.2 Large 300mm Diameter Polariscope 69

3.4.3 Sectioning for Forensic Analysis of Compression Failure 70

3.5 Etching of Prepared Section Surfaces 71

3.5.1 Surface Etching 72

3.6 Sublimation Etch Pits in Ice, Ih 72

3.7 Etch-Pitting Technique for Dislocations 75

3.7.1 Simultaneous Etching and Replicating 76

3.7.2 Etching Processes and Their Applications 77

3.8 Chemical Etching and Replicating of Ice Surfaces 79

3.9 Displaying Dislocation Climb by Etching 81

3.10 Thermal Etching: An Unexploited Materialogy Tool 82

References 88

4 Test Techniques and Test Systems 91

4.1 On the Strength of Materials and Test Techniques 91

4.1.1 Issues with Stress–Strain (s–e) Diagrams at High Temperatures 93

4.1.2 Fundamentals of Displacement Rate, Strain Rate, and Stress Rate Tests 95

4.1.3 Time – An Important Parameter at High Temperatures 96

4.2 Static Modulus and Dynamic Elastic Modulus 97

4.3 Thermal Expansion Over a Wide Range of Temperature 97

4.4 Creep and Fracture Strength 98

4.5 Bending Tests 99

4.5.1 Three-Point Bending 99

4.5.2 Four-Point Bending 99

4.5.3 Cantilever Beam Bending 102

4.6 Compression Tests – Uniaxial, Biaxial, and Triaxial 103

4.6.1 Uniaxial Compression Tests 103

4.6.2 Biaxial or Confined Compression Tests 103

4.6.3 Triaxial or Multiaxial Compression and Tension Tests 103

4.7 Tensile and/or Compression Test System 104

4.7.1 Tests with Single Top-Lever Loading Frame 104

4.7.2 Universal Testing Machine and Systems: Introduction to SRRT Methodology 105

4.8 Stress Relaxation Tests (SRTs) 107

4.8.1 Necessity for Stress Relaxation Properties 108

4.8.2 Basic Principle of SRTs 109

4.9 Cyclic Fatigue 110

4.9.1 Low-Cycle Fatigue (LCF) and High-Cycle Fatigue (HCF Tests) 110

4.9.2 Uncharted Characteristics of Delayed Elasticity in Cyclic Loading 112

4.9.3 Cyclic Loading of Snow and Thermal Cycling on Asphalt Concrete 113

4.10 Acoustic Emission (AE) and/or Microseismic Activity (MA) 114

4.11 Tempering of Structural and Automotive Glasses 116

4.12 Specimen Size and Geometry: Depending on Material Grain Structure 119

4.13 In Situ Borehole Tests: Inspirations from Rock Mechanics 119

References 123

5 Creep Fundamentals 129

5.1 Overview 130

5.2 On Rheology and Rheological Terminology 132

5.3 Forms of Creep and Deformation Maps 132

5.3.1 Generalization for Polycrystalline Materials 132

5.3.2 Nabarro–Herring Creep 133

5.3.3 Coble Creep 133

5.3.4 Harper–Dorn Creep 133

5.3.5 Ashby–Verrall Creep 133

5.3.6 Deformation Mechanism Maps 134

5.4 Grain-Boundary Shearing or Sliding 134

5.5 Creep Curves – Classical Primary, Secondary, and Tertiary Descriptions 135

5.5.1 Elasticity and Annealing of Glass 136

5.5.2 Phenomenological Rheology of Glass 137

5.5.3 Normalized Creep – Another Presentation of Rheology of Glass


Nirmal K. Sinha, Retired, Institute for Aerospace Research, National Research Council of Canada, Ottawa, Ontario, Canada.

Shoma Sinha, Queen's Partnerships and Innovation, Queen's University, Kingston, Ontario, Canada.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.