E-Book, Englisch, Band Volume 1, 442 Seiten, Web PDF
Reihe: Studies in Applied Mechanics
Skalmierski Mechanics and Strength of Materials
1. Auflage 2013
ISBN: 978-1-4831-0255-9
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, Band Volume 1, 442 Seiten, Web PDF
Reihe: Studies in Applied Mechanics
ISBN: 978-1-4831-0255-9
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark
Mechanics and Strength of Materials focuses on the methodologies used in studying the strength of materials. The text first discusses kinematics, and then describes the motion of a single particle; description of the motion of a rigid body; plane motion of a rigid body; and examples of the determination of velocities and accelerations in the motion of plane mechanism. The book explains the dynamics of a particle and statics, including the center of mass and gravity of a particle system; law of variation of angular momentum; analytical and graphical methods in the statics of plane systems; and spatial system of forces. The text also discusses the statics of elastic systems, and then describes the strength calculations of beams; problems of simple beam-bending; geometric moments of inertia; buckling problems of axially compressed rods; and simultaneous bending and torsion of rods with circular cross-section. The book focuses on the dynamics of rigid bodies, dynamics in relative motion, and fundamentals of analytical mechanics. The text further looks at vibrations of systems with one degree and many degrees of freedom. The book is a good source of data for readers interested in studying the strength of materials.
Autoren/Hrsg.
Weitere Infos & Material
1;Front Cover;1
2;Mechanics and Strength of Materials;4
3;Copyright Page;5
4;Preface;6
5;Table of Contents;8
6;Introduction;12
7;Chapter 1. Kinematics;22
7.1;1.1. Motion of a single particle;22
7.2;1.2. Description of the motion of a rigid body;37
7.3;1.3. Relative motion;51
7.4;1.4. Plane motion of a rigid body;59
7.5;1.5. Examples of the determination of velocities and accelarations in the motion of plane mechanisms;66
8;Chapter 2. The dynamics of a particle;80
8.1;2.1. Fundamental definitions and theorems;80
8.2;2.2. Motion of a particle;83
8.3;2.3. Centre of mass and centre of gravity of a particle system;91
8.4;2.4. Law of variation of momentum;97
8.5;2.5. Law of variation of angular momentum;103
9;Chapter 3. Statics;106
9.1;3.1. Equations of equilibrum;106
9.2;3.2. Couple;107
9.3;3.3. Spatial system of forces. Wrench;108
9.4;3.4. Analytical and graphical methods in the statics of plane systems;110
9.5;3.5. Examples;117
9.6;3.6. The distributive character of transverse loads in simple rods;132
9.7;3.7. The equilibrium of rods loaded with transverse forces;138
9.8;3.8. Friction;147
10;Chapter 4. The statics of elastic systems;155
10.1;4.1. Hooke's law;155
10.2;4.2. Safety factor;160
10.3;4.3. Statically indeterminate systems;162
10.4;4.4. Problems of simple beam-bending;166
10.5;4.5. Geometric moments of inertia;170
10.6;4.6. Strength calculations of beams;177
10.7;4.7. The equation for the axis of a deflected beam;180
10.8;4.8. Graphical methods of determining deflections of simple beams (Mohr's analogy);184
10.9;4.9. Oblique bending;187
10.10;4.10. Some special problems of bending theory;188
10.11;4.11. Clapeyron's systems;196
10.12;4.12. Buckling problems of axially compressed rods;210
10.13;4.13. Highly curved rods;214
10.14;4.14. Torsion of rods with circular cross-section;220
10.15;4.15. Springs;223
10.16;4.16. Simultaneous bending and torsion of rods with circular crosssection;228
11;Chapter 5. The dynamics of rigid bodies;231
11.1;5.1. Moments of inertia of rigid bodies;231
11.2;5.2. The angular momentum of a rigid body in general motion;237
11.3;5.3. Angular momentum in circular motion;239
11.4;5.4. Euler's equations;241
11.5;5.5. The kinetic energy of rigid bodies in general motion;246
12;Chapter 6. Dynamics in relative motion;252
12.1;6.1. Differential equation of the motion of a particle in a noninertial system;252
12.2;6.2. The dynamics of rigid bodies in relative motion;254
13;Chapter 7. Fundamentals of analytical mechanics;260
13.1;7.1. Generalized coordinates and degrees of freedom of a mechanical system;260
13.2;7.2. D'Alembert's principle;266
13.3;7.3. Hamilton's principle;269
13.4;7.4. Lagrange equations of the first order;272
13.5;7.5. Lagrange equations of the second order;276
13.6;7.6. Kinetic energy of a system;283
13.7;7.7. Impulsive motion;283
13.8;7.8. Gyroscopic and dissipative forces;287
13.9;7.9. The Lagrange equations for electromechanical systems;290
13.10;7.10. Hamilton's canonical equations;294
13.11;7.11. The total energy of a mechanical system;295
13.12;7.12. Configurational space;297
13.13;7.13. The stability of mechanical systems;304
14;Chapter 8. Vibrations of systems with one degree of freedom;318
14.1;8.1. Preliminary discussion;318
14.2;8.2. Free vibrations of harmonic oscillators;321
14.3;8.3. The influence of dissipative forces in the free vibrations of harmonic oscillators;330
14.4;8.4. Forced vibrations of harmonic oscillators;334
14.5;8.5. Vibrations of harmonic oscillators with kinematical input;343
14.6;8.6. Vibrations of harmonic oscillators under periodic input forces;344
14.7;8.7. Vibrations of non-linear systems;347
15;Chapter 9. Vibrations of systems with many degrees of freedom;362
15.1;9.1. Preliminary discussion;362
15.2;9.2. Problems of linearization of the equations;363
15.3;9.3. Free vibrations of conservative systems;367
15.4;9.4. Normal coordinates;373
15.5;9.5. Forced vibrations of a system;374
15.6;9.6. Free vibrations of dissipative systems;375
15.7;9.7. Forced vibrations in dissipative systems;377
15.8;9.8. Vibrations of Clapeyron's systems;378
16;Chapter 10. Some methods of describing random phenomena in mechanics;382
16.1;10.1. Basic concepts;382
16.2;10.2. Methods of describing stochastic processes;392
16.3;10.3. Stochastic linearization;398
16.4;10.4. Random vibrations of linear systems with one degree of freedom;400
16.5;10.5. Random vibrations of systems with many degrees of freedom;408
16.6;10.6. The problem of departures;411
16.7;10.7. Fokker—Planck—Kolmogorov equations;426
16.8;10.8. Proposal for a method of direct determination of probability density;431
17;Bibliography;436
18;Subject index;440