Skiadas | Advances in Data Analysis | E-Book | www.sack.de
E-Book

E-Book, Englisch, 364 Seiten

Reihe: Statistics for Industry and Technology

Skiadas Advances in Data Analysis

Theory and Applications to Reliability and Inference, Data Mining, Bioinformatics, Lifetime Data, and Neural Networks
1. Auflage 2009
ISBN: 978-0-8176-4799-5
Verlag: Birkhäuser Boston
Format: PDF
Kopierschutz: 1 - PDF Watermark

Theory and Applications to Reliability and Inference, Data Mining, Bioinformatics, Lifetime Data, and Neural Networks

E-Book, Englisch, 364 Seiten

Reihe: Statistics for Industry and Technology

ISBN: 978-0-8176-4799-5
Verlag: Birkhäuser Boston
Format: PDF
Kopierschutz: 1 - PDF Watermark



This unified volume is a collection of invited chapters presenting recent developments in the field of data analysis, with applications to reliability and inference, data mining, bioinformatics, lifetime data, and neural networks. The book is a useful reference for graduate students, researchers, and practitioners in statistics, mathematics, engineering, economics, social science, bioengineering, and bioscience.

Skiadas Advances in Data Analysis jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


1;Contents;6
2;Preface;14
3;List of Contributors;15
4;List of Tables;15
5;List of Figures;18
6;Part I Data Mining and Text Mining;23
6.1;1 Assessing the Stability of Supplementary Elements on Principal Axes Maps Through Bootstrap Resampling. Contribution to Interpretation in Textual Analysis;24
6.2;Ramón Alvarez-Esteban, Olga Valencia, and Mónica Bécue-Bertaut;24
6.2.1;1.1 Introduction;24
6.2.2;1.2 Data;25
6.2.3;1.3 Methodology;25
6.2.4;1.4 Results;26
6.2.4.1;1.4.1 CA results;26
6.2.4.2;1.4.2 Stability;27
6.2.5;1.5 Conclusion;30
6.2.6;References;31
6.3;2 A Doubly Projected Analysis for Lexical Tables ;33
6.4;Simona Balbi and Michelangelo Misuraca;33
6.4.1;2.1 Introduction;33
6.4.2;2.2 Some methodological recall;34
6.4.2.1;2.2.1 Constrained principal component analysis;34
6.4.2.2;2.2.2 Principal component analysis onto a reference subspace;35
6.4.3;2.3 Basic concepts and data structure;35
6.4.4;2.4 A doubly projected analysis;36
6.4.5;2.5 The Italian academic programs: A study on skills and competences supply;36
6.4.6;References;38
6.5;3 Analysis of a Mixture of Closed and Open-Ended Questions in the Case of a Multilingual Survey;40
6.6;Mónica Bécue-Bertaut, Karmele Fernández-Aguirre, and Juan I. Modroño-Herrán;40
6.6.1;3.1 Introduction;40
6.6.2;3.2 Data and objectives;40
6.6.3;3.3 Notation;42
6.6.4;3.4 Methodology;43
6.6.4.1;3.4.1 Principle of multiple factor analysis;43
6.6.4.2;3.4.2 Integrating categorical sets in MFA;44
6.6.4.3;3.4.3 Integrating frequency tables in MFA;44
6.6.4.4;3.4.4 Extended MFA performed as a weighted PCA;44
6.6.5;3.5 Results;45
6.6.5.1;3.5.1 Clustering from closed questions only;45
6.6.5.2;3.5.2 Clustering from closed and open-ended questions;46
6.6.6;3.6 Conclusion;49
6.6.7;References;50
6.7;4 Number of Frequent Patterns in Random Databases ;51
6.8;Loïck Lhote;51
6.8.1;4.1 Introduction;51
6.8.2;4.2 Model of databases;52
6.8.2.1;4.2.1 Frequent pattern mining;52
6.8.2.2;4.2.2 Model of random databases;53
6.8.3;4.3 Main results;54
6.8.3.1;4.3.1 Linear frequency threshold;54
6.8.3.2;4.3.2 Constant frequency threshold;54
6.8.3.3;4.3.3 Sketch of proofs;55
6.8.4;4.4 Dynamical databases;56
6.8.4.1;4.4.1 Dynamical sources;56
6.8.4.2;4.4.2 Main tools;57
6.8.4.3;4.4.3 Proof of Theorem 3;59
6.8.5;4.5 Improved memoryless model of databases;60
6.8.6;4.6 Experiments;60
6.8.7;4.7 Conclusion;61
6.8.8;References;62
7;Part II Information Theory and Statistical Applications;64
7.1;5 Introduction ;65
7.2;Koustautiuos Zografos;65
7.2.1;5.1 Introduction;65
7.2.2;References;66
7.3;6 Measures of Divergence in Model Selection ;67
7.4;Alex Karagrigoriou and Kyriacos Mattheou;67
7.4.1;6.1 Introduction;67
7.4.2;6.2 Measures of divergence;68
7.4.3;6.3 Model selection criteria;69
7.4.4;6.4 The divergence information criterion;71
7.4.5;6.5 Lower bound of the MSE of prediction of DIC;74
7.4.6;6.6 Simulations;77
7.4.7;References;80
7.5;7 High Leverage Points and Outliers in Generalized Linear Models for Ordinal Data ;82
7.6;M.C. Pardo;82
7.6.1;7.1 Introduction;82
7.6.2;7.2 Background and notation for GLM;83
7.6.3;7.3 The hat matrix: Properties;85
7.6.4;7.4 Outliers;88
7.6.5;7.5 Numerical example;91
7.6.6;7.6 Conclusion;94
7.6.7;References;94
7.7;8 On a Minimization Problem Involving Divergences and Its Applications;96
7.8;Athanasios P. Sachlas and Takis Papaioannou;96
7.8.1;8.1 Introduction;96
7.8.2;8.2 Minimization of divergences;97
7.8.3;8.3 Properties of divergences without probability vectors;98
7.8.4;8.4 Graduating mortality rates via divergences;102
7.8.4.1;8.4.1 Divergence-theoretic actuarial graduation;102
7.8.4.2;8.4.2 Lagrangian duality results for the power divergence;104
7.8.5;8.5 Numerical investigation;105
7.8.6;8.6 Conclusions and comments;106
7.8.7;References;108
8;Part III Asymptotic Behaviour of Stochastic Processesand Random Fields;110
8.1;9 Remarks on Stochastic Models Under Consideration ;111
8.2;Ekaterina V. Bulinskaya;111
8.2.1;9.1 Introduction;111
8.2.2;9.2 Results and methods;112
8.2.3;9.3 Applications;114
8.2.4;References;117
8.3;10 New Invariance Principles for Critical Branching Process in Random Environment;119
8.4;Valeriy I. Afanasyev;119
8.4.1;10.1 Introduction;119
8.4.2;10.2 Main results;121
8.4.3;10.3 Proof of Theorem 1;123
8.4.4;10.4 Finite-dimensional distributions;126
8.4.5;10.5 Conclusion;128
8.4.6;References;129
8.5;11 Gaussian Approximation for Multichannel Queueing Systems ;130
8.6;Larisa G. Afanas'eva;130
8.6.1;11.1 Introduction;130
8.6.2;11.2 Model description;131
8.6.3;11.3 The basic theorem;131
8.6.4;11.4 A limit theorem for a regenerative arrival process;135
8.6.5;11.5 Doubly stochastic poisson process (DSPP);136
8.6.6;11.6 Conclusion;140
8.6.7;References;141
8.7;12 Stochastic Insurance Models, Their Optimalityand Stability ;142
8.8;Ekaterina V. Bulinskaya;142
8.8.1;12.1 Introduction;142
8.8.2;12.2 Model description;143
8.8.3;12.3 Optimal control;143
8.8.4;12.4 Sensitivity analysis;147
8.8.5;12.5 Conclusion;153
8.8.6;References;153
8.9;13 Central Limit Theorem for Random Fields and Applications ;154
8.10;Alexander Bulinski;154
8.10.1;13.1 Introduction;154
8.10.2;13.2 Main results;155
8.10.3;13.3 Applications;161
8.10.4;References;163
8.11;14 A Berry--Esseen Type Estimate for Dependent Systems on Transitive Graphs;164
8.12;Alexey Shashkin;164
8.12.1;14.1 Introduction;164
8.12.2;14.2 Main result;165
8.12.3;14.3 Proof;166
8.12.4;14.4 Conclusion;169
8.12.5;References;169
8.13;15 Critical and Subcritical Branching Symmetric Random Walks on d-Dimensional Lattices;170
8.14;Elena Yarovaya;170
8.14.1;15.1 Introduction;170
8.14.2;15.2 Description of a branching random walk;171
8.14.3;15.3 Definition of criticality for branching random walks;173
8.14.4;15.4 Main equations;174
8.14.5;15.5 Asymptotic behavior of survival probabilities;175
8.14.6;15.6 Limit theorems;176
8.14.7;15.7 Proof of theorems for dimensions d=1,2 in critical and subcritical cases;177
8.14.8;15.8 Conclusions;180
8.14.9;References;181
9;Part IV Bioinformatics and Markov Chains;182
9.1;16 Finite Markov Chain Embedding for the Exact Distribution of Patterns in a Set of Random Sequences;183
9.2;Juliette Martin, Leslie Regad, Anne-Claude Camproux, and Grégory Nuel;183
9.2.1;16.1 Introduction;183
9.2.2;16.2 Methods;184
9.2.2.1;16.2.1 Notations;184
9.2.2.2;16.2.2 Pattern Markov chains;185
9.2.2.3;16.2.3 Exact computations;185
9.2.3;16.3 Data;187
9.2.3.1;16.3.1 Simulated data;187
9.2.3.2;16.3.2 Real data;187
9.2.4;16.4 Results and discussion;188
9.2.4.1;16.4.1 Simulation study;188
9.2.4.2;16.4.2 Illustrations on biological sequences;189
9.2.5;16.5 Conclusion;191
9.2.6;References;191
9.3;17 On the Convergence of the Discrete-Time Homogeneous Markov Chain ;193
9.4;I. Kipouridis and G.Tsaklidis;193
9.4.1;17.1 Introduction;193
9.4.2;17.2 The homogeneous Markov chain in discrete time;194
9.4.3;17.3 The equation of the image of a hypersphere under the transformation (2.1);194
9.4.4;17.4 Representation of equation (3.6) in matrix form;197
9.4.5;17.5 Conditions for a hypersphere of Rn-1 to be the image of a hypersphere under the stochastic transformation pT(t)=pT(t-1)P;202
9.4.6;References;212
10;Part V Life Table Data, Survival Analysis, and Riskin Household Insurance;213
10.1;18 Comparing the Gompertz-Type Models with a First Passage Time Density Model ;214
10.2;Christos H. Skiadas and Charilaos Skiadas;214
10.2.1;18.1 Introduction;214
10.2.2;18.2 The Gompertz-type models;215
10.2.3;18.3 Application to life table and the Carey medfly data;217
10.2.4;18.4 Remarks;218
10.2.5;18.5 Conclusion;219
10.2.6;References;219
10.3;19 A Comparison of Recent Procedures in Weibull Mixture Testing ;221
10.4;Karl Mosler and Lars Haferk221
10.4.1;19.1 Introduction;221
10.4.2;19.2 Three approaches for testing homogeneity;222
10.4.3;19.3 Implementing MLRT and D-tests with Weibull alternatives;223
10.4.4;19.4 Comparison of power;225
10.4.5;19.5 Conclusion;227
10.4.6;References;227
10.5;20 Hierarchical Bayesian Modelling of Geographic Dependence of Risk in Household Insurance;229
10.6;László Márkus, N. Miklós Arató, and Vilmos Prokaj;229
10.6.1;20.1 Introduction;229
10.6.2;20.2 Data description, model building, and a tool for fit diagnosis;230
10.6.3;20.3 Model estimation, implementation of the MCMC algorithm;233
10.6.4;20.4 Conclusion;236
10.6.5;References;237
11;Part VI Neural Networks and Self-Organizing Maps;238
11.1;21 The FCN Framework: Development and Applications ;239
11.2;Yiannis S. Boutalis, Theodoros L. Kottas, and Manolis A. Christodoulou;239
11.2.1;21.1 Introduction;239
11.2.2;21.2 Fuzzy cognitive maps;242
11.2.2.1;21.2.1 Fuzzy cognitive map representation;242
11.2.3;21.3 Existence and uniqueness of solutions in fuzzy cognitive maps;244
11.2.3.1;21.3.1 The contraction mapping principle;244
11.2.3.2;21.3.2 Exploring the results;247
11.2.3.3;21.3.3 FCM with input nodes;250
11.2.4;21.4 The fuzzy cognitive network approach;252
11.2.4.1;21.4.1 Close interaction with the real system;252
11.2.4.2;21.4.2 Weight updating procedure;252
11.2.4.3;21.4.3 Storing knowledge from previous operating conditions;253
11.2.5;21.5 Controlling a wastewater anaerobic digestion unit (Kottas et al., 2006);256
11.2.5.1;21.5.1 Control of the process using the FCN;258
11.2.5.2;21.5.2 Results;260
11.2.5.3;21.5.3 Discussion;263
11.2.6;21.6 The FCN approach in tracking the maximum power point in PV arrays (Kottas et al., 2007b);263
11.2.6.1;21.6.1 Simulation of the PV system;266
11.2.6.2;21.6.2 Control of the PV system using FCN;267
11.2.6.3;21.6.3 Discussion;269
11.2.7;21.7 Conclusions;270
11.2.8;References;270
11.3;22 On the Use of Self-Organising Maps to Analyse Spectral Data ;274
11.4;Véronique Cariou and Dominique Bertrand;274
11.4.1;22.1 Introduction;274
11.4.2;22.2 Self-organising map clustering and visualisation tools;275
11.4.3;22.3 Illustrative examples;276
11.4.4;22.4 Conclusion;280
11.4.5;References;281
11.5;23 Neuro-Fuzzy Versus Traditional Models for Forecasting Wind Energy Production ;282
11.6;George Atsalakis, Dimitris Nezis, and Constantinos Zopounidis;282
11.6.1;23.1 Introduction;282
11.6.2;23.2 Related research;283
11.6.3;23.3 Methodology;287
11.6.4;23.4 Model presentation;288
11.6.5;23.5 Results;290
11.6.6;23.6 Conclusion;291
11.6.7;References;292
12;Part VII Parametric and Nonparametric Statistics;295
12.1;24 Nonparametric Comparison of Several Sequential k-out-of-n Systems ;296
12.2;Eric Beutner;296
12.2.1;24.1 Introduction;296
12.2.2;24.2 Preliminaries and derivation of the test statistics;297
12.2.2.1;24.2.1 Sequential order statistics: Introduction and motivation;297
12.2.2.2;24.2.2 Sequential order statistics and associated counting processes;299
12.2.3;24.3 K-sample tests for known 's;302
12.2.4;24.4 K-sample tests for unknown 's;304
12.2.5;References;308
12.3;25 Adjusting p-Values when n Is Large in the Presence of Nuisance Parameters ;310
12.4;Sonia Migliorati and Andrea Ongaro;310
12.4.1;25.1 Introduction;310
12.4.2;25.2 Normal model with known variance;311
12.4.3;25.3 Normal model with unknown variance;314
12.4.4;25.4 Conclusion;319
12.4.5;25.5 Appendix;320
12.4.6;References;323
13;Part VIII Statistical Theory and Methods;324
13.1;26 Fitting Pareto II Distributions on Firm Size: Statistical Methodology and Economic Puzzles ;325
13.2;Aldo Corbellini, Lisa Crosato, Piero Ganugi, and Marco Mazzoli;325
13.2.1;26.1 Introduction;325
13.2.2;26.2 Data description;326
13.2.3;26.3 Fitting the Pareto II distribution by means of the forward search;327
13.2.4;26.4 Empirical results;328
13.2.5;26.5 Economic implications;329
13.2.6;26.6 Concluding remarks;331
13.2.7;References;332
13.3;27 Application of Extreme Value Theory to Economic Capital Estimation ;333
13.4;Samit Paul and Andrew Barnes;333
13.4.1;27.1 Introduction;333
13.4.2;27.2 Background mathematics;334
13.4.2.1;27.2.1 Risk measure;334
13.4.2.2;27.2.2 Extreme value theory;334
13.4.2.3;27.2.3 Estimating VaR using EVT;335
13.4.3;27.3 Threshold uncertainty;336
13.4.3.1;27.3.1 Tail-data versus accuracy tradeoff;336
13.4.3.2;27.3.2 Mean residual life plot;336
13.4.3.3;27.3.3 Fit threshold ranges;337
13.4.4;27.4 Experimental framework and results;337
13.4.4.1;27.4.1 Data;337
13.4.4.2;27.4.2 Simulation engine;337
13.4.4.3;27.4.3 Threshold selection;337
13.4.4.4;27.4.4 Bootstrap results on VaR stability;338
13.4.5;27.5 Conclusion;338
13.4.6;References;339
13.5;28 Multiresponse Robust Engineering: Industrial Experiment Parameter Estimation ;341
13.6;Elena G. Koleva and Ivan N. Vuchkov;341
13.6.1;28.1 Introduction;341
13.6.2;28.2 Combined method for regression parameter estimation;343
13.6.3;28.3 Experimental designs;345
13.6.4;28.4 Experimental application;345
13.6.5;28.5 Conclusion;347
13.6.6;References;348
13.7;29 Inference for Binomial Change Point Data ;349
13.8;James M. Freeman;349
13.8.1;29.1 Introduction;349
13.8.2;29.2 Analysis;350
13.8.3;29.3 Applications;352
13.8.3.1;29.3.1 Page's data;352
13.8.3.2;29.3.2 Lindisfarne Scribes' data;353
13.8.3.3;29.3.3 Club foot data;354
13.8.3.4;29.3.4 Simulated data;354
13.8.4;29.4 Conclusion;355
13.8.5;References;356
14;Index;357



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.