Sobolevskii / Ashyralyev | New Difference Schemes for Partial Differential Equations | Buch | 978-3-0348-9622-1 | sack.de

Buch, Englisch, Band 148, 446 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 692 g

Reihe: Operator Theory: Advances and Applications

Sobolevskii / Ashyralyev

New Difference Schemes for Partial Differential Equations


Softcover Nachdruck of the original 1. Auflage 2004
ISBN: 978-3-0348-9622-1
Verlag: Birkhäuser Basel

Buch, Englisch, Band 148, 446 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 692 g

Reihe: Operator Theory: Advances and Applications

ISBN: 978-3-0348-9622-1
Verlag: Birkhäuser Basel


The present monograph is devoted to the construction and investigation of the new high order of accuracy difference schemes of approximating the solutions of regular and singular perturbation boundary value problems for partial differential equations. The construction is based on the exact difference scheme and Taylor's decomposition on the two or three points. This approach permitted essentially to extend to a class of problems where the theory of difference methods is applicable. Namely, now it is possible to investigate the differential equations with variable coefficients and regular and singular perturbation boundary value problems. The investigation is based on new coercivity inequalities.

The book will be of value to professional mathematicians, as well as advanced students in the fields of numerical analysis, functional analysis, and ordinary and partial differential equations.

Sobolevskii / Ashyralyev New Difference Schemes for Partial Differential Equations jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


1 Linear Difference Equations.- 1.1 Difference Equations of the First Order.- 1.2 Difference Equations of the Second Order.- 1.3 Difference Equations with Constant Coefficients.- 2 Difference Schemes for First-Order Differential Equations.- 2.1 Single-Step Exact Difference Scheme and Its Applications.- 2.2 Taylor’s Decomposition on Two Points and Its Applications.- 3 Difference Schemes for Second-Order Differential Equations.- 3.1 Two-Step Exact Difference Scheme and Its Applications.- 3.2 Taylor’s Decomposition on Three Points and Its Applications.- 4 Partial Differential Equations of Parabolic Type.- 4.1 A Cauchy Problem. Well-posedness.- 4.2 Difference Schemes Generated by an Exact Difference Scheme.- 4.3 Single-Step Difference Schemes Generated by Taylor’s Decomposition.- 5 Partial Differential Equations of Elliptic Type.- 5.1 A Boundary-Value Problem. Well-posedness.- 5.2 Difference Schemes Generated by an Exact Difference Scheme.- 5.3 Two-Step Difference Schemes Generated by Taylor’s Decomposition.- 6 Partial Differential Equations of Hyperbolic Type.- 6.1 A Cauchy Problem.- 6.2 Difference Schemes Generated by an Exact Difference Scheme.- 6.3 Two-Step Difference Schemes Generated by Taylor’s Decomposition.- 7 Uniform Difference Schemes for Perturbation Problems.- 7.1 A Cauchy Problem for Parabolic Equations.- 7.2 A Boundary-Value Problem for Elliptic Equations.- 7.3 A Cauchy Problem for Hyperbolic Equations.- 8 Appendix: Delay Parabolic Differential Equations.- 8.1 The Initial-Value Differential Problem.- 8.2 The Difference Schemes.- Comments on the Literature.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.