Soh / McCarthy | Geometric Design of Linkages | Buch | 978-1-4614-2767-4 | sack.de

Buch, Englisch, 448 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 715 g

Reihe: Interdisciplinary Applied Mathematics

Soh / McCarthy

Geometric Design of Linkages


2. Auflage 2011
ISBN: 978-1-4614-2767-4
Verlag: Springer

Buch, Englisch, 448 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 715 g

Reihe: Interdisciplinary Applied Mathematics

ISBN: 978-1-4614-2767-4
Verlag: Springer


This book is an introduction to the mathematical theory of design for articulated mechanical systems known as linkages. The focus is on sizing mechanical constraints that guide the movement of a work piece, or end-effector, of the system. The function of the device is prescribed as a set of positions to be reachable by the end-effector; and the mechanical constraints are formed by joints that limit relative movement. The goal is to find all the devices that can achieve a specific task. Formulated in this way the design problem is purely geometric in character. Robot manipulators, walking machines, and mechanical hands are examples of articulated mechanical systems that rely on simple mechanical constraints to provide a complex workspace for the end- effector. The principles presented in this book form the foundation for a design theory for these devices. The emphasis, however, is on articulated systems with fewer degrees of freedom than that of the typical robotic system, and therefore, less complexity. This book will be useful to mathematics, engineering and computer science departments teaching courses on mathematical modeling of robotics and other articulated mechanical systems.

This new edition includes research results of the past decade on the synthesis of multi loop planar and spherical linkages, and the use of homotopy methods and Clifford algebras in the synthesis of spatial serial chains. One new chapter on the synthesis of spatial serial chains introduces numerical homotopy and the linear product decomposition of polynomial systems.  The second new chapter introduces the Clifford algebra formulation of the kinematics equations of serial chain robots. Examples are use throughout to demonstrate the theory.

Soh / McCarthy Geometric Design of Linkages jetzt bestellen!

Zielgruppe


Graduate

Weitere Infos & Material


Introduction.- Analysis of Planar Linkages.- Graphical Synthesis in the Plane.- Planar Kinematics.- Algebraic Synthesis of Planar.- Multiloop Planar Linkages.- Analysis of Spherical Linkages.- Spherical Kinematics.- Algebraic Synthesis of Spherical Chains.- Multiloop Spherical.- Analysis of Spatial Chains.- Spatial Kinematics.- Algebraic Synthesis of Spatial.- Synthesis of Spatial Chains with Reachable Surface.- Clifford Algebra Synthesis of Spatial Chains.- Platform Manipulators.- References.


J. Michael McCarthy is a Professor in the Department of Mechanical Engineering at University of California, Irvine.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.