Buch, Englisch, 429 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 674 g
Buch, Englisch, 429 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 674 g
Reihe: Stochastic Modelling and Applied Probability
ISBN: 978-1-4419-2078-2
Verlag: Springer
This book is an introduction to optimal stochastic control for continuous time Markov processes and the theory of viscosity solutions. The authors approach stochastic control problems by the method of dynamic programming. The text covers dynamic programming for deterministic optimal control problems, as well as to the corresponding theory of viscosity solutions. New chapters introduce the role of stochastic optimal control in portfolio optimization and in pricing derivatives in incomplete markets and two-controller, zero-sum differential games. Also covered are controlled Markov diffusions and viscosity solutions of Hamilton-Jacobi-Bellman equations. The authors use illustrative examples and selective material to connect stochastic control theory with other mathematical areas (e.g. large deviations theory) and with applications to engineering, physics, management, and finance.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Wirtschaftswissenschaften Betriebswirtschaft Wirtschaftsmathematik und -statistik
- Mathematik | Informatik Mathematik Mathematische Analysis Variationsrechnung
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Angewandte Mathematik, Mathematische Modelle
- Wirtschaftswissenschaften Volkswirtschaftslehre Volkswirtschaftslehre Allgemein Ökonometrie
- Mathematik | Informatik Mathematik Stochastik Mathematische Statistik
- Mathematik | Informatik Mathematik Stochastik Wahrscheinlichkeitsrechnung
- Technische Wissenschaften Technik Allgemein Mess- und Automatisierungstechnik
Weitere Infos & Material
Deterministic Optimal Control.- Viscosity Solutions.- Optimal Control of Markov Processes: Classical Solutions.- Controlled Markov Diffusions in ?n.- Viscosity Solutions: Second-Order Case.- Logarithmic Transformations and Risk Sensitivity.- Singular Perturbations.- Singular Stochastic Control.- Finite Difference Numerical Approximations.- Applications to Finance.- Differential Games.