Stadtmüller / Luh | Mathematik für Wirtschaftswissenschaftler | Buch | 978-3-486-27569-8 | www.sack.de

Buch, Deutsch, 334 Seiten, Format (B × H): 159 mm x 241 mm, Gewicht: 740 g

Stadtmüller / Luh

Mathematik für Wirtschaftswissenschaftler

Einführung
7. Auflage 2004
ISBN: 978-3-486-27569-8
Verlag: De Gruyter

Einführung

Buch, Deutsch, 334 Seiten, Format (B × H): 159 mm x 241 mm, Gewicht: 740 g

ISBN: 978-3-486-27569-8
Verlag: De Gruyter


Das Studium der Wirtschaftswissenschaften ist heute ohne mathematische Grundkenntnisse nicht mehr möglich. Deshalb ist es das Ziel dieses Lehrbuches, den Studierenden die für das Grundstudium relevanten Teile der Mathematik an die Hand zu geben. Die Begriffsbildung bleibt dabei klar und in adäquater Weise exakt und präzise. Die mathematischen Ergebnisse werden sorgfältig hergeleitet. Schon frühzeitig wird die Anwendbarkeit mathematischer Ergebisse in den Wirtschaftswissenschaften aufgezeigt.

Das Mathematik-Lehrbuch der Wahl!

Stadtmüller / Luh Mathematik für Wirtschaftswissenschaftler jetzt bestellen!

Weitere Infos & Material


Grundlagen: Mengen - Reelle Zahlen - Anordnung reelle Zahlen, Ungleichungen, Beträge - Mathematische Beweismethoden - Binomialkoeffizienten, binomischer Satz - Folgen - Reihen - Potenzen und Logarithmen - Einiges aus der Trigonometrie. Funktionen: Funktionen in der Ökonomie - Definitionen, Beispiele, Veranschaulichung von Funktionen. Differentialrechnung: Der Begriff der Ableitung einer Funktion - Ableitungsregeln - Die Ableitungen einiger wichtiger Funktionen - Wachstumsrate und Elastizität einer Funktion - Die geometrische Bedeutung der Ableitung - Kurvendiskussion - Die Regeln von DE L ´HOSÄPITAL - Partielle Ableitungen - Extremstellen von Funktionen mehrerer Variablen - Extremstellen mit Nebenbedingungen - Ausgleichen von Fehlern; Methode der kleinsten Quadrate. Integralrechnung: Der Begriff des bestimmten Integrals - Eigenschaften des Integrals - Zusammenhang zwischen Differential- und Integralrechnungen - Methoden zur Berechnung von Integralen - Uneigentliche Integrale - Tabellen der wichtigsten Grundintegrale. Matrizen, Deteminanten, lineare Gleichungssysteme: Matrizen, Definitionen und einfache Eigenschaften - Operationen mit Matrizen - Eigenschaften von Vektoren - Inversion von Matrizen - Determinanten - Lineare Gleichungssysteme. Grundbegriffe der linearen Optimierung: Beispiele linearer Optimierungsprobleme - Lineare Optimierung in zwei Variablen - Das Simplexverfahren.


Stadtmüller, Karin
Dr. Karin Stadtmüller, Ulm, seit Januar 2002 Wissenschaftliche Mitarbeiterin in der Fakultät für Mathematik und Wirtschaftswissenschaften an der Universität Ulm.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.