E-Book, Englisch, 571 Seiten
Stasinopoulos / Rigby / Heller Flexible Regression and Smoothing
Erscheinungsjahr 2017
ISBN: 978-1-351-98038-8
Verlag: Taylor & Francis
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)
Using GAMLSS in R
E-Book, Englisch, 571 Seiten
Reihe: Chapman & Hall/CRC The R Series
ISBN: 978-1-351-98038-8
Verlag: Taylor & Francis
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)
This book is about learning from data using the Generalized Additive Models for Location, Scale and Shape (GAMLSS). GAMLSS extends the Generalized Linear Models (GLMs) and Generalized Additive Models (GAMs) to accommodate large complex datasets, which are increasingly prevalent. GAMLSS allows any parametric distribution for the response variable and modelling all the parameters (location, scale and shape) of the distribution as linear or smooth functions of explanatory variables. This book provides a broad overview of GAMLSS methodology and how it is implemented in R. It includes a comprehensive collection of real data examples, integrated code, and figures to illustrate the methods, and is supplemented by a website with code, data and additional materials.
Autoren/Hrsg.
Weitere Infos & Material
Part I Introduction to models and packages
Why GAMLSS?
Introduction to the gamlss packages
Part II The R implementation: algorithms and functions
The Algorithms
The gamlss() function
Methods for fitted gamlss objects
Part III Distributions
The gamlss.family of distributions
Finite mixture distributions
Part IV Additive terms
Linear parametric additive terms
Additive Smoothing Terms
Random effects
Part V Model selection and diagnostics
Model selection techniques
Diagnostics
Part VI Applications
Centile Estimation
Further Applications