Stenger / Baumann / Tucker | Navier-Stokes Equations on R3 × [0, T] | Buch | 978-3-319-80162-9 | sack.de

Buch, Englisch, 226 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 365 g

Stenger / Baumann / Tucker

Navier-Stokes Equations on R3 × [0, T]


Softcover Nachdruck of the original 1. Auflage 2016
ISBN: 978-3-319-80162-9
Verlag: Springer International Publishing

Buch, Englisch, 226 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 365 g

ISBN: 978-3-319-80162-9
Verlag: Springer International Publishing


In this monograph, leading researchers in the world of numerical analysis, partial differential equations, and hard computational problems study the properties of solutions of the Navier–Stokespartial differential equations on (x, y, z, t) ? R × [0, T]. Initially converting the PDE to a system of integral equations, the authors then describe spaces A of analytic functions that house solutions of this equation, and show that these spaces of analytic functions are dense in the spaces S of rapidly decreasing and infinitely differentiable functions. This method benefits from the following advantages:

  • The functions of S are nearly always conceptual rather than explicit
  • Initial and boundary conditions of solutions of PDE are usually drawn from the applied sciences, and as such, they are nearly always piece-wise analytic, and in this case, the solutions have the same properties
  • When methods of approximation are applied to functions of A they converge at an exponential rate, whereas methods of approximation applied to the functions of S converge only at a polynomial rate
  • Enables sharper bounds on the solution enabling easier existence proofs, and a more accurate and more efficient method of solution, including accurate error bounds

Following the proofs of denseness, the authors prove the existence of a solution of the integral equations in the space of functions A n R × [0, T], and provide an explicit novel algorithm based on Sinc approximation and Picard–like iteration for computing the solution. Additionally, the authors include appendices that provide a custom Mathematica program for computing solutions based on the explicit algorithmic approximation procedure, and which supply explicit illustrations of these computed solutions.

Stenger / Baumann / Tucker Navier-Stokes Equations on R3 × [0, T] jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Preface.- Introduction, PDE, and IE Formulations.- Spaces of Analytic Functions.- Spaces of Solution of the N–S Equations.- Proof of Convergence of Iteration 1.6.3.- Numerical Methods for Solving N–S Equations.- Sinc Convolution Examples.- Implementation Notes.- Result Notes.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.