Buch, Englisch, 310 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 658 g
Reihe: Texts in Applied Mathematics
Averaging and Homogenization
Buch, Englisch, 310 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 658 g
Reihe: Texts in Applied Mathematics
ISBN: 978-0-387-73828-4
Verlag: Springer US
The author of this book is one of the leading world experts on multiscale methods, a hot area in applied mathematics. The book is meant to be an introduction, aimed primarily towards graduate students. Part I of the book and Part III of the book are necessarily terse and present the wide range of applications of the ideas, and illustrate their unity. The presentation of the material here is particularly suited to the pedagogical goal of communicating the subject area to the wide range of mathematicians, scientists and engineers who are currently engaged in the use of these tools to tackle the enormous range of applications that require them. Extensions and generalizations of the results presented in these notes, as well as references to the literature, are given in the Discussion and Bibliography section, at the end of each chapter. With the exception of Chapter 1, all chapters are supplemented with exercises.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Technische Wissenschaften Technik Allgemein Mathematik für Ingenieure
- Mathematik | Informatik Mathematik Stochastik Mathematische Statistik
- Technische Wissenschaften Technik Allgemein Computeranwendungen in der Technik
- Mathematik | Informatik EDV | Informatik Informatik
- Mathematik | Informatik Mathematik Stochastik Wahrscheinlichkeitsrechnung
- Mathematik | Informatik EDV | Informatik Professionelle Anwendung Computer-Aided Design (CAD)
- Mathematik | Informatik EDV | Informatik Angewandte Informatik Computeranwendungen in Wissenschaft & Technologie
- Mathematik | Informatik Mathematik Mathematische Analysis Differentialrechnungen und -gleichungen
Weitere Infos & Material
Background.- Analysis.- Probability Theory and Stochastic Processes.- Ordinary Differential Equations.- Markov Chains.- Stochastic Differential Equations.- Partial Differential Equations.- Perturbation Expansions.- Invariant Manifolds for ODEs.- Averaging for Markov Chains.- Averaging for ODEs and SDEs.- Homogenization for ODEs and SDEs.- Homogenization for Elliptic PDEs.- Homogenization for Parabolic PDEs.- Averaging for Linear Transport and Parabolic PDEs.- Theory.- Invariant Manifolds for ODEs: The Convergence Theorem.- Averaging for Markov Chains: The Convergence Theorem.- Averaging for SDEs: The Convergence Theorem.- Homogenization for SDEs: The Convergence Theorem.- Homogenization for Elliptic PDEs: The Convergence Theorem.- Homogenization for Elliptic PDEs: The Convergence Theorem.- Averaging for Linear Transport and Parabolic PDEs: The Convergence Theorem.