E-Book, Englisch, 792 Seiten
Sun Emerging Technologies for Food Processing
1. Auflage 2005
ISBN: 978-0-08-045564-8
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark
E-Book, Englisch, 792 Seiten
ISBN: 978-0-08-045564-8
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark
Emerging Technologies for Food Processing presents a comprehensive review of innovations in food processing, stresses topics vital to the food industry today, and pinpoints the trends in future research and development. This volume contains 27 chapters and is divided into six parts covering topics such as the latest advances in non-thermal processing, alternative technologies and strategies for thermal processing, the latest developments in food refrigeration, and current topics in minimal processing of vegetables, fruits, juices and cook-chill ready meals and modified atmosphere packaging for minimally processed foods.
* Each chapter is written by international experts presenting thorough research results and critical reviews
* Includes a comprehensive list of recently published literature
* Covers topics such as high pressure, pulsed electric fields, recent developments in microwave heating, and vacuum cooling
Dr. Da-Wen Sun is internationally recognized for his leadership in food engineering research and education and a highly respected journal editor. He is the recipient of numerous awards and honors including election to the Royal Irish Academy in 2010, selection as a Member of Academia Europaea (The Academy of Europe) in 2011, induction as a Fellow of International Academy of Food Science and Technology in 2012, the International Association for Food Protection (IAFP) Freezing Research Award in 2013, the International Association of Engineering and Food (IAEF) Lifetime Achievement Award in 2015 and naming as 2015 Thomson Reuters Highly Cited Researcher. His many scholarly works have become standard reference materials for researchers in the areas of computer vision/hyperspectral imaging, computational fluid dynamics modelling, and vacuum cooling. Results of his work have been published in more than 400 peer-reviewed journal papers (Web of Science h-index = 66), among them; thirty papers have been selected by ESI as highly-cited papers, ranking him first in the world in Agricultural Sciences.
Autoren/Hrsg.
Weitere Infos & Material
1;Cover;1
2;Emerging Technologies for Food Processing;4
3;Contents;6
4;About the Editor;14
5;Contributors;16
6;Preface;19
7;Part 1 High Pressure Processing;20
7.1;1. High Pressure Processing of Foods: An Overview;22
7.1.1;1 Introduction;22
7.1.2;2 Principles of high pressure processing;23
7.1.2.1;2.1 Background;23
7.1.2.2;2.2 Description of the process;24
7.1.2.3;2.3 Process principles;26
7.1.2.4;2.4 Packaging requirements;27
7.1.2.5;2.5 Current commercial status of high pressure processing;28
7.1.3;3 Use of high pressure to improve food safety and stability;28
7.1.3.1;3.1 Effect of high pressure on microorganisms;29
7.1.3.1.1;3.1.1 Bacteria;29
7.1.3.1.2;3.1.2 Bacterial spores;31
7.1.3.1.3;3.1.3 Fungi;31
7.1.3.1.4;3.1.4 Viruses;32
7.1.3.1.5;3.1.5 Prions;32
7.1.3.2;3.2 Factors influencing microbial sensitivity to high pressure;33
7.1.3.2.1;3.2.1 pH;33
7.1.3.2.2;3.2.2 Water activity (a[sub(w)]);33
7.1.3.2.3;3.2.3 Temperature, pressure and holding time;34
7.1.3.3;3.3 High pressure regulations;34
7.1.4;4 Effects of high pressure on food quality;35
7.1.4.1;4.1 Effect of high pressure on food colour;36
7.1.4.2;4.2 Effect of high pressure on food texture;36
7.1.4.3;4.3 Effect of high pressure on food sensory quality;37
7.1.4.4;4.4 Effect of high pressure on food yield;37
7.1.5;5 Other applications of high pressure;39
7.1.5.1;5.1 High pressure freezing applications;39
7.1.5.2;5.2 High pressure thawing;41
7.1.5.3;5.3 High pressure non-frozen storage;41
7.1.6;6 Modelling HP processes;42
7.1.6.1;6.1 Modelling high pressure processes;42
7.1.6.2;6.2 Modelling high pressure freezing processes;43
7.1.7;7 Outlook for high pressure processing of food;44
7.1.8;8 Conclusions;46
7.1.9;References;46
7.2;2. High-pressure Processing of Salads and Ready Meals;52
7.2.1;1 Introduction;52
7.2.2;2 Importance of salads and ready meals;53
7.2.3;3 Pressure effects on microorganisms;54
7.2.3.1;3.1 Efficacy of microbial inactivation in HPP processed ready meals;54
7.2.3.2;3.2 Efficacy of microbial inactivation in HPP-processed dips, sauces and salad dressings;56
7.2.4;4 Pressure effects on enzyme activity;56
7.2.4.1;4.1 Effect of high pressure on enzyme activity of fruits and vegetables;57
7.2.4.2;4.2 Effect of high pressure on enzyme activity in meats;58
7.2.5;5 Pressure effects on texture;58
7.2.5.1;5.1 Textural changes in pressure treated ready meals;58
7.2.5.2;5.2 Textural changes in pressure-treated dips, sauces and salad dressings;60
7.2.6;6 Pressure effects on nutrients;61
7.2.7;7 Conclusions;61
7.2.8;Acknowledgement;62
7.2.9;References;62
7.3;3. Microbiological Aspects of High-pressure Processing;66
7.3.1;1 Introduction;66
7.3.2;2 Factors affecting effectiveness of treatment;67
7.3.2.1;2.1 Types of organisms;67
7.3.2.2;2.2 Food products;68
7.3.2.3;2.3 Conditions of treatments;71
7.3.2.4;2.4 Combined treatments;73
7.3.3;3 Effects of high pressure;75
7.3.3.1;3.1 Bacterial and fungal cells;75
7.3.3.1.1;3.1.1 Morphology;75
7.3.3.1.2;3.1.2 Cell wall and membrane;76
7.3.3.1.3;3.1.3 Biochemical reactions;77
7.3.3.1.4;3.1.4 Genetic mechanisms;77
7.3.3.2;3.2 Bacterial spores;77
7.3.3.3;3.3 Parasites;78
7.3.3.4;3.4 Viruses;78
7.3.4;4 Conclusions;79
7.3.5;References;79
8;Part 2 Pulsed Electric Fields Processing;86
8.1;4. Overview of Pulsed Electric Field Processing for Food;88
8.1.1;1 Introduction;88
8.1.2;2 Historical background;89
8.1.3;3 Mechanisms of action;91
8.1.4;4 PEF treatment systems;93
8.1.4.1;4.1 Generation of pulsed electric fields;94
8.1.4.2;4.2 Treatment chamber design;96
8.1.5;5 Main processing parameters;98
8.1.5.1;5.1 Electric field strength;98
8.1.5.2;5.2 Treatment time, specific energy and pulse geometry;99
8.1.5.3;5.3 Treatment temperature;100
8.1.5.4;5.4 Treatment medium factors;100
8.1.5.4.1;5.4.1 Conductivity;101
8.1.5.4.2;5.4.2 Effect of air bubbles and particles;101
8.1.5.5;5.5 Cell characteristics;101
8.1.6;6 Applications;102
8.1.6.1;6.1 Stress induction;102
8.1.6.2;6.2 Disintegration of biological material;103
8.1.6.3;6.3 Preservation of liquid media;105
8.1.7;7 Problems and challenges;108
8.1.8;8 Conclusions;109
8.1.9;Acknowledgements;109
8.1.10;Nomenclature;110
8.1.11;References;110
8.2;5. Pulsed Electric Field Processing of Liquid Foods and Beverages;118
8.2.1;1 Introduction;118
8.2.2;2 PEF technology;120
8.2.3;3 Mechanisms of microbial inactivation;122
8.2.4;4 Equipment;124
8.2.4.1;4.1 Batch treatment system;125
8.2.4.2;4.2 Continuous treatment system;126
8.2.5;5 PEF treatment variables;128
8.2.5.1;5.1 PEF system variables;128
8.2.5.2;5.2 Medium parameters;131
8.2.5.2.1;5.2.1 pH Effect;131
8.2.5.2.2;5.2.2 Temperature effect;132
8.2.5.2.3;5.2.3 Composition effect;133
8.2.5.2.4;5.2.4 Antimicrobials;133
8.2.5.2.5;5.2.5 Ionic effect;135
8.2.6;6 Target differences;135
8.2.7;7 High-pressure processing (HPP) and PEF;137
8.2.8;8 Specific results on liquid foods;138
8.2.8.1;8.1 Milk;138
8.2.8.2;8.2 Liquid whole egg and egg white;139
8.2.8.3;8.3 Apple cider and juice;140
8.2.8.4;8.4 Orange juice;141
8.2.8.5;8.5 Tomato juice;143
8.2.8.6;8.6 Red grape juice;143
8.2.8.7;8.7 Mango juice;144
8.2.8.8;8.8 Cranberry juice;145
8.2.8.9;8.9 Beer;145
8.2.8.10;8.10 Rice wine (yakju);145
8.2.9;9 Process models;145
8.2.9.1;9.1 Energy and power;145
8.2.9.2;9.2 Microbial inactivation models;146
8.2.9.3;9.3 Process temperature;147
8.2.10;10 Conclusions;147
8.2.11;Acknowledgements;149
8.2.12;Nomenclature;149
8.2.13;References;150
8.3;6. Effect of High Intensity Electric Field Pulses on Solid Foods;160
8.3.1;1 Introduction;160
8.3.2;2 Food safety;162
8.3.3;3 Effects on food quality;163
8.3.3.1;3.1 Effects on proteins and enzyme activity;163
8.3.3.2;3.2 Effects on texture and microstructure;165
8.3.4;4 Use of PEF in combination with other methods;167
8.3.5;5 Conclusions;168
8.3.6;References;168
8.4;7. Enzymatic Inactivation by Pulsed Electric Fields;174
8.4.1;1 Introduction;174
8.4.2;2 Mechanism of enzyme inactivation by PEF;176
8.4.3;3 Factors affecting enzyme inactivation by PEF;177
8.4.3.1;3.1 PEF processing factors;177
8.4.3.2;3.2 Enzyme characteristics;179
8.4.3.3;3.3 Product parameters;179
8.4.4;4 Effects of PEF on enzymes;180
8.4.4.1;4.1 Pectin methyl esterase (PME);182
8.4.4.2;4.2 Polygalacturonase (PG);184
8.4.4.3;4.3 Polyphenoloxidase (PPO);184
8.4.4.4;4.4 Peroxidase (POD);185
8.4.4.5;4.5 Lipoxygenase (LOX);186
8.4.4.6;4.6 Alkaline phosphatase (ALP);186
8.4.4.7;4.7 Protease;187
8.4.4.8;4.8 Lipase;188
8.4.4.9;4.9 Other enzymes;189
8.4.5;5 Modelling enzymatic inactivation by PEF;189
8.4.6;6 Enzyme inactivation by combining PEF with other hurdles;193
8.4.7;7 Enzyme activity during storage of PEF processed foods;194
8.4.8;8 Conclusions;195
8.4.9;Nomenclature;195
8.4.10;References;196
8.5;8. Food Safety Aspects of Pulsed Electric Fields;202
8.5.1;1 Introduction;202
8.5.2;2 Microbiological safety of pulsed electric fields;204
8.5.2.1;2.1 Effect of PEF on microorganisms;204
8.5.2.2;2.2 Mechanism of microorganism inactivation by PEF;205
8.5.2.3;2.3 Factors affecting microbial inactivation by PEF;206
8.5.2.3.1;2.3.1 Process parameters;206
8.5.2.3.2;2.3.2 Microbial characteristics;208
8.5.2.3.3;2.3.3 Product parameters;208
8.5.2.4;2.4 Combination of PEF with other hurdles to inactivate microorganisms;210
8.5.2.5;2.5 Modelling the inactivation of microorganisms by PEF;212
8.5.2.6;2.6 Effect of PEF on pathogenic microorganisms;213
8.5.2.6.1;2.6.1 Escherichia coli;215
8.5.2.6.2;2.6.2 Listeria;217
8.5.2.6.3;2.6.3 Salmonella;218
8.5.2.6.4;2.6.4 Bacillus;219
8.5.2.6.5;2.6.5 Other pathogenic microorganisms;219
8.5.2.7;2.7 Effect of PEF on spoilage microorganisms;220
8.5.2.7.1;2.7.1 Lactobacillus;220
8.5.2.7.2;2.7.2 Saccharomyces;222
8.5.2.7.3;2.7.3 Other spoilage microorganisms;223
8.5.2.8;2.8 Shelf-life of foods processed by PEF;224
8.5.3;3 Chemical safety and PEF;225
8.5.4;4 Conclusions;226
8.5.5;Nomenclature;227
8.5.6;References;227
9;Part 3 Other Non-thermal Processing Techniques;238
9.1;9. Developments in Osmotic Dehydration;240
9.1.1;1 Introduction;240
9.1.2;2 Mechanism of osmotic dehydration;242
9.1.3;3 Effect of process parameters on mass transfer;245
9.1.4;4 Determination of moisture and solid diffusion coefficients;246
9.1.4.1;4.1 Infinite flat plate;246
9.1.4.2;4.2 Rectangular parallelepiped;247
9.1.4.3;4.3 Infinite cylinder;247
9.1.4.4;4.4 Finite cylinder;247
9.1.5;5 Methods to increase the rate of mass transfer;248
9.1.5.1;5.1 Application of high hydrostatic pressure;249
9.1.5.2;5.2 Application of high electric field pulse pre-treatment;249
9.1.5.3;5.3 Application of ultrasound during osmotic dehydration;252
9.1.5.4;5.4 Application of gamma-irradiation in osmotic dehydration;252
9.1.5.5;5.5 Application of vacuum during osmotic dehydration;253
9.1.5.6;5.6 Application of centrifugal force during osmotic dehydration;253
9.1.6;6 Applications of osmotic dehydration;254
9.1.6.1;6.1 Osmotic dehydration and air drying;254
9.1.6.2;6.2 Osmotic dehydration and freezing;255
9.1.6.3;6.3 Osmotic dehydration and frying;256
9.1.6.4;6.4 Osmotic dehydration and rehydration;257
9.1.6.5;6.5 Osmotic dehydration and jam manufacture;259
9.1.7;7 Limitations of osmotic dehydration;260
9.1.8;8 Management of osmotic solution;260
9.1.9;9 Conclusions;261
9.1.10;Nomenclature;262
9.1.11;References;262
9.2;10. Athermal Membrane Processes for the Concentration of Liquid Foods and Natural Colours;270
9.2.1;1 Introduction;270
9.2.2;2 Existing methods;271
9.2.2.1;2.1 Evaporative concentration;271
9.2.2.1.1;2.1.1 Open pan evaporators;271
9.2.2.1.2;2.1.2 Plate evaporators;272
9.2.2.1.3;2.1.3 Rising film evaporator;272
9.2.2.1.4;2.1.4 Falling film evaporator;272
9.2.2.1.5;2.1.5 Agitated thin-film evaporators;272
9.2.2.2;2.2 Freeze concentration;272
9.2.2.3;2.3 Membrane processes;273
9.2.2.3.1;2.3.1 Microfiltration;273
9.2.2.3.2;2.3.2 Ultrafiltration;274
9.2.2.3.3;2.3.3 Reverse osmosis;274
9.2.3;3 Osmotic membrane distillation;275
9.2.3.1;3.1 Fundamentals of osmotic membrane distillation;275
9.2.3.2;3.2 Mathematical models;276
9.2.3.2.1;3.2.1 Mass transfer;276
9.2.3.2.2;3.2.2 Mass transfer through the membrane;276
9.2.3.2.3;3.2.3 Mass transfer through the boundary layers;278
9.2.3.2.4;3.2.4 Heat transfer;278
9.2.3.2.5;3.2.5 Heat transfers through boundary layers;278
9.2.3.3;3.3 OMD membranes;279
9.2.3.4;3.4 Effect of various process parameters;280
9.2.3.4.1;3.4.1 Type of osmotic agent;280
9.2.3.4.2;3.4.2 Concentration;280
9.2.3.4.3;3.4.3 Flow rate;281
9.2.3.4.4;3.4.4 Temperature;281
9.2.3.4.5;3.4.5 Membrane pore size;281
9.2.3.5;3.5 Process design and economics;281
9.2.4;4 Direct osmosis;282
9.2.4.1;4.1 Fundamentals of direct osmosis;282
9.2.4.2;4.2 Mathematical models;283
9.2.4.2.1;4.2.1 Mass transfer through the membrane;283
9.2.4.3;4.3 DO membranes;285
9.2.4.4;4.4 Effect of various process parameters;285
9.2.4.4.1;4.4.1 Type of osmotic agent;285
9.2.4.4.2;4.4.2 Concentration;285
9.2.4.4.3;4.4.3 Temperature;286
9.2.4.4.4;4.4.4 Flow rate;286
9.2.4.4.5;4.4.5 Membrane thickness;286
9.2.4.5;4.5 Process design and economics;286
9.2.5;5 Membrane modules;287
9.2.6;6 Applications;288
9.2.6.1;6.1 OMD;288
9.2.6.2;6.2 DO;290
9.2.7;7 Suggestions for future work;290
9.2.8;8 Conclusions;291
9.2.9;Acknowledgements;292
9.2.10;Nomenclature;292
9.2.11;References;294
9.3;11. High Intensity Pulsed Light Technology;298
9.3.1;1 Introduction;298
9.3.2;2 Principles of pulsed light technology;299
9.3.3;3 Effects of pulsed light on food products;303
9.3.3.1;3.1 Effects of PL on microorganisms;303
9.3.3.2;3.2 PL process optimization;305
9.3.3.2.1;3.2.1 General considerations;305
9.3.3.2.2;3.2.2 Spectral distribution and treatment intensity;311
9.3.3.2.3;3.2.3 Time parameters;314
9.3.3.2.4;3.2.4 Target parameters;315
9.3.3.3;3.3 Effects of PL on enzymes and food properties;317
9.3.3.3.1;3.3.1 Enzymes;317
9.3.3.3.2;3.3.2 Nutritional properties;317
9.3.3.3.3;3.3.3 Sensory properties;317
9.3.4;4 Systems for pulsed light technology;318
9.3.4.1;4.1 Description of PL systems;318
9.3.4.2;4.2 Examples of PL experimental plants;319
9.3.5;5 Conclusions;321
9.3.6;Acknowledgements;322
9.3.7;Nomenclature;322
9.3.8;References;323
9.4;12. Non-thermal Processing by Radio Frequency Electric Fields;326
9.4.1;1 Introduction;326
9.4.2;2 Radio frequency electric fields equipment;328
9.4.3;3 Modelling of radio frequency electric fields;332
9.4.4;4 RFEF non-thermal inactivation of yeast;333
9.4.5;5 Bench scale RFEF inactivation of bacteria and spores;334
9.4.6;6 Pilot scale RFEF inactivation of bacteria;336
9.4.7;7 Electrical costs;338
9.4.8;8 Conclusions;338
9.4.9;Acknowledgements;339
9.4.10;References;339
9.5;13. Application of Ultrasound;342
9.5.1;1 Introduction;342
9.5.2;2 Fundamentals of ultrasound;344
9.5.2.1;2.1 The physics and chemistry of ultrasound;344
9.5.2.1.1;2.1.1 Power ultrasound in liquid systems;344
9.5.2.1.1.1;2.1.1.1 Homogeneous liquid-phase systems;344
9.5.2.1.1.2;2.1.1.2 Solid–liquid systems;345
9.5.2.1.1.3;2.1.1.3 Liquid–liquid systems;345
9.5.2.1.2;2.1.2 Power ultrasound in gases;345
9.5.2.2;2.2 Ultrasonic processing equipment;346
9.5.2.2.1;2.2.1 Laboratory scale;346
9.5.2.2.2;2.2.2 Large scale;346
9.5.2.2.2.1;2.2.2.1 Batch systems;347
9.5.2.2.2.2;2.2.2.2 Flow systems;348
9.5.3;3 Ultrasound as a food preservation tool;348
9.5.3.1;3.1 Inactivation of microorganisms;349
9.5.3.2;3.2 Inactivation of enzymes;351
9.5.4;4 Ultrasound as a processing aid;352
9.5.4.1;4.1 Mixing and homogenization;352
9.5.4.2;4.2 Foam formation and destruction;353
9.5.4.3;4.3 Precipitation of airborne powders;355
9.5.4.4;4.4 Filtration and drying;357
9.5.4.4.1;4.4.1 Filtration;357
9.5.4.4.2;4.4.2 Drying;357
9.5.4.5;4.5 Extraction;359
9.5.5;5 Ultrasound effects on food properties;361
9.5.5.1;5.1 Effects of ultrasound on dairy products;361
9.5.5.2;5.2 Effects of ultrasound on juices;362
9.5.5.3;5.3 Effects of ultrasound on egg products;363
9.5.6;6 Conclusions;363
9.5.7;References;364
9.6;14. Irradiation of Foods;372
9.6.1;1 Introduction;372
9.6.1.1;1.1 Importance of food-borne illness;372
9.6.2;2 Fundamentals of food irradiation;375
9.6.2.1;2.1 Definition;375
9.6.2.2;2.2 Doses of irradiation;376
9.6.3;3 Wholesomeness of irradiated foods;377
9.6.3.1;3.1 Government regulations;377
9.6.3.2;3.2 Public acceptance;380
9.6.4;4 Biological effects of irradiation;382
9.6.4.1;4.1 Effects on microorganisms;382
9.6.4.2;4.2 Effects on parasites and insects;383
9.6.4.3;4.3 Effects on viruses;386
9.6.4.4;4.4 Effect on ripening delay;386
9.6.4.5;4.5 Sprouting inhibition;386
9.6.5;5 Irradiation of foods;387
9.6.5.1;5.1 Irradiation of fresh fruit and vegetables;387
9.6.5.2;5.2 Irradiation of fish, meat and poultry;388
9.6.5.3;5.3 Use of combined treatments;388
9.6.5.3.1;5.3.1 Application on fruit and vegetables;389
9.6.5.3.2;5.3.2 Application on poultry, meat and fish;391
9.6.6;6 Conclusions;396
9.6.7;References;397
9.7;15. New Chemical and Biochemical Hurdles;406
9.7.1;1 Introduction;406
9.7.2;2 Organic acids;407
9.7.2.1;2.1 Acetic acid;408
9.7.2.2;2.2 Propionic acid;409
9.7.2.3;2.3 Lactic acid;410
9.7.2.4;2.4 Sorbic acid;411
9.7.2.5;2.5 Benzoic acid;411
9.7.2.6;2.6 Parabens;412
9.7.2.7;2.7 Citric acid;412
9.7.2.8;2.8 Malic acid;413
9.7.2.9;2.9 Fumaric acid;413
9.7.2.10;2.10 Tartaric and adipic acid;414
9.7.2.11;2.11 GdL;414
9.7.2.12;2.12 Long chain fatty acids and phenolic acids;414
9.7.3;3 Plant-derived antimicrobials;415
9.7.4;4 Chitin/chitosan;418
9.7.5;5 Antimicrobial enzymes;420
9.7.5.1;5.1 Lysozyme;420
9.7.5.2;5.2 Glucose oxidase;421
9.7.5.3;5.3 Lactoperoxidase;422
9.7.5.4;5.4 Other oxidoreductases;422
9.7.6;6 Nisin;423
9.7.7;7 Lactoferrin;424
9.7.8;8 Ozone;425
9.7.9;9 Reuterin;425
9.7.10;10 Electrolysed water and other concepts;426
9.7.11;11 Discussion;426
9.7.12;12 Conclusions;428
9.7.13;References;429
10;Part 4 Alternative Thermal Processing;436
10.1;16. Recent Developments in Microwave Heating;438
10.1.1;1 Introduction;438
10.1.2;2 Dielectric properties of foods;439
10.1.3;3 Heat and mass transfer in microwave processing;442
10.1.4;4 Microwave processing of foods;445
10.1.4.1;4.1 Microwave baking;446
10.1.4.2;4.2 Microwave drying;448
10.1.4.3;4.3 Microwave thawing and tempering;451
10.1.4.4;4.4 Microwave pasteurization and sterilization;452
10.1.4.5;4.5 Microwave roasting;454
10.1.4.6;4.6 Microwave blanching;454
10.1.4.7;4.7 Future developments in microwave processing;455
10.1.5;5 Conclusions;456
10.1.6;Nomenclature;456
10.1.7;References;457
10.2;17. Radio-Frequency Processing;464
10.2.1;1 Introduction;464
10.2.2;2 Dielectric heating;465
10.2.2.1;2.1 Difference between radio frequency and microwaves;466
10.2.2.2;2.2 Heating mechanism of RF;467
10.2.3;3 Material properties;470
10.2.4;4 Adopting RF heating;472
10.2.4.1;4.1 The standardized 50 O RF technology;473
10.2.4.2;4.2 Design of a simple applicator;474
10.2.5;5 Radio-frequency heating applications;476
10.2.5.1;5.1 Thermal treatment of food products;477
10.2.5.2;5.2 Seed treatments;479
10.2.5.3;5.3 Product disinfestation or disinfection;479
10.2.6;6 Radio-frequency drying applications;480
10.2.6.1;6.1 Wood drying;480
10.2.6.2;6.2 Agricultural product drying;481
10.2.6.3;6.3 Food drying;481
10.2.7;7 Conclusions;482
10.2.8;Nomenclature;482
10.2.9;References;483
10.3;18. Ohmic Heating;488
10.3.1;1 Introduction;488
10.3.2;2 Fundamentals of ohmic heating;489
10.3.2.1;2.1 Basic principles;489
10.3.2.2;2.2 Electrical heat generation;491
10.3.3;3 Electrical conductivity;493
10.3.4;4 Generic configurations;495
10.3.4.1;4.1 Batch configuration (Figure 18.3a);495
10.3.4.2;4.2 Transverse ohmic heating (Figure 18.3b);496
10.3.4.3;4.3 Collinear ohmic heating (Figure 18.3c);497
10.3.4.4;4.4 Technical considerations;498
10.3.5;5 Modelling;498
10.3.5.1;5.1 Treatment of non-Newtonian liquid;498
10.3.5.2;5.2 Treatment of solid/liquid mixtures;502
10.3.5.2.1;5.2.1 Electrical heat generation;503
10.3.5.2.2;5.2.2 Mass conservation;503
10.3.5.2.3;5.2.3 Heat transfer;504
10.3.5.2.3.1;5.2.3.1 Reference temperature;504
10.3.5.2.3.2;5.2.3.2 Energy equation;504
10.3.5.2.3.3;5.2.3.3 Liquid-solid heat transfer coefficient;505
10.3.5.2.4;5.2.4 Effects of parameters;505
10.3.5.2.4.1;5.2.4.1 Slip velocity effect;505
10.3.5.2.4.2;5.2.4.2 Volume fraction effect;507
10.3.5.2.4.3;5.2.4.3 Particle diameter effect;507
10.3.5.2.4.4;5.2.4.4 Electrical conductivity effect;507
10.3.6;6 Treatment of products;508
10.3.6.1;6.1 Product suitability – formulation and pre-treatment;508
10.3.6.2;6.2 Thermal treatments;511
10.3.6.2.1;6.2.1 Stabilization;511
10.3.6.2.1.1;6.2.1.1 Quantification of lethal effect;511
10.3.6.2.1.2;6.2.1.2 Mechanisms of microbial lethality;512
10.3.6.2.2;6.2.2 Cooking;513
10.3.6.2.3;6.2.3 Thawing;513
10.3.6.2.4;6.2.4 Blanching;513
10.3.6.2.5;6.2.5 Evaporation;514
10.3.6.3;6.3 Pre-treatment on mass-transfer operations;514
10.3.6.3.1;6.3.1 Diffusion and extraction;515
10.3.6.3.2;6.3.2 Dehydration;515
10.3.6.4;6.4 On-line treatment validation;515
10.3.6.5;6.5 Other aspects;516
10.3.7;7 Conclusions;517
10.3.8;Nomenclature;518
10.3.9;References;519
10.4;19. Combined Microwave Vacuum-drying;526
10.4.1;1 Introduction;526
10.4.2;2 Microwaves;528
10.4.3;3 Dielectric properties of food;530
10.4.4;4 Thermal properties of food;531
10.4.5;5 Characteristics of microwave vacuum-drying;531
10.4.5.1;5.1 Drying rate;532
10.4.5.2;5.2 Quality attributes of microwave vacuum-dried products;534
10.4.5.2.1;5.2.1 Rehydration potential;534
10.4.5.2.2;5.2.2 Texture modification;535
10.4.5.2.3;5.2.3 Retention of chemical components;536
10.4.5.3;5.3 Dehydration costs;538
10.4.6;6 Combination of microwave vacuum with other processes;540
10.4.7;7 Equipment;541
10.4.7.1;7.1 Commercial microwave vacuum-driers;541
10.4.7.2;7.2 Research microwave vacuum-driers;542
10.4.8;8 Modelling of microwave vacuum-drying;542
10.4.9;9 Microwave freeze-drying;543
10.4.10;10 Other applications of microwave vacuum processing;544
10.4.10.1;10.1 Tempering and thawing;545
10.4.10.2;10.2 Enzymes and microorganisms;545
10.4.11;11 Commercial potential;546
10.4.12;12 Conclusions;546
10.4.13;Nomenclature;547
10.4.14;References;547
10.5;20. New Hybrid Drying Technologies;554
10.5.1;1 Introduction;554
10.5.2;2 Product quality degradation during dehydration;556
10.5.3;3 Hybrid drying systems;556
10.5.3.1;3.1 Heat pump drying;557
10.5.3.2;3.2 Fluidized bed drying;560
10.5.3.3;3.3 Radio-frequency drying;562
10.5.3.4;3.4 Microwave drying;563
10.5.3.5;3.5 Novel drying technologies;565
10.5.3.5.1;3.5.1 Combined microwave and superheated steam drying;566
10.5.3.5.2;3.5.2 Pressure regulating drying;566
10.5.3.5.3;3.5.3 Rotating jet spouted bed;567
10.5.4;4 Conclusions;568
10.5.5;References;568
10.6;21. Monitoring Thermal Processes by NMR Technology;572
10.6.1;1 Introduction;572
10.6.2;2 Basic theory of NMR and MRI;573
10.6.2.1;2.1 Nuclear spins and energy levels;573
10.6.2.1.1;2.1.1 Precession and net magnetization vector;575
10.6.2.1.2;2.1.2 RF pulses;575
10.6.2.2;2.2 Relaxation;576
10.6.2.3;2.3 Chemical shift;576
10.6.2.4;2.4 Detection and Fourier transformation;578
10.6.2.5;2.5 Pulse sequences;578
10.6.2.5.1;2.5.1 Free induction decay – FID;578
10.6.2.5.2;2.5.2 Measurement of relaxation times;578
10.6.2.5.3;2.5.3 Diffusion-editing;579
10.6.2.5.4;2.5.4 Water suppression;580
10.6.2.6;2.6 Magnetic resonance imaging;580
10.6.2.6.1;2.6.1 MRI pulse sequences;581
10.6.2.7;2.7 NMR and MRI instruments;581
10.6.2.8;2.8 NMR and multivariate data analysis;582
10.6.3;3 NMR and thermal processes;583
10.6.3.1;3.1 Rheo-NMR;583
10.6.3.2;3.2 NMR and MRI baking;584
10.6.3.3;3.3 Cooking with NMR;586
10.6.3.4;3.4 MRI freezing;588
10.6.4;4 Future directions for process NMR;589
10.6.5;5 Conclusions;590
10.6.6;Nomenclature;590
10.6.7;References;591
11;Part 5 Innovations in Food Refrigeration;596
11.1;22. Vacuum Cooling of Foods;598
11.1.1;1 Introduction;598
11.1.2;2 Vacuum cooling principles, process and equipment;599
11.1.2.1;2.1 Vacuum cooling principles;599
11.1.2.2;2.2 Vacuum cooling process;600
11.1.2.3;2.3 Vacuum cooling equipment;600
11.1.3;3 Applications of vacuum cooling in the food industry;603
11.1.3.1;3.1 Fruit and vegetables;603
11.1.3.2;3.2 Bakery products;605
11.1.3.3;3.3 Fishery products;606
11.1.3.4;3.4 Sauces, soups and particulate foods;606
11.1.3.5;3.5 Large cooked meat joints;607
11.1.3.6;3.6 Ready meals;609
11.1.4;4 Mathematical modelling of the vacuum cooling process;610
11.1.4.1;4.1 Mathematical modelling of vacuum cooling of liquid food;610
11.1.4.2;4.2 Mathematical modelling of vacuum cooling of cooked meats;610
11.1.5;5 Advantages and disadvantages of vacuum cooling;611
11.1.5.1;5.1 Advantages of vacuum cooling;611
11.1.5.2;5.2 Disadvantages of vacuum cooling;613
11.1.6;6 Factors affecting the vacuum cooling process;614
11.1.6.1;6.1 Factors affecting vacuum cooling rate;614
11.1.6.2;6.2 Factors affecting product/produce temperature distribution;615
11.1.6.3;6.3 Factors affecting vacuum cooling loss;615
11.1.7;7 Conclusions;616
11.1.8;Nomenclature;616
11.1.9;References;617
11.2;23. Ultrasonic Assistance of Food Freezing;622
11.2.1;1 Introduction;622
11.2.2;2 Power ultrasound generation and equipment;623
11.2.2.1;2.1 Basic components required for power ultrasound generation;623
11.2.2.1.1;2.1.1 Power generator;623
11.2.2.1.2;2.1.2 Ultrasound transducers;624
11.2.2.2;2.2 Some common power ultrasonic systems;626
11.2.2.2.1;2.2.1 Ultrasonic bath;626
11.2.2.2.2;2.2.2 Ultrasonic probe system;626
11.2.2.2.3;2.2.3 Air-borne power ultrasonic system;627
11.2.3;3 Acoustic effects on the food freezing process;628
11.2.3.1;3.1 Acoustic effects on liquid, gas and solid;628
11.2.3.1.1;3.1.1 Acoustic effects on liquid;628
11.2.3.1.2;3.1.2 Acoustic effects on gas;630
11.2.3.1.3;3.1.3 Acoustic effects on solid;630
11.2.3.2;3.2 Acoustic effects on the freezing process;631
11.2.4;4 Major functions of power ultrasound in assisting food freezing;632
11.2.4.1;4.1 Initiation of ice nucleation;632
11.2.4.2;4.2 Acceleration of the freezing process;633
11.2.4.3;4.3 Control of the crystal size distribution in the frozen product;634
11.2.4.4;4.4 Improvement of frozen food microstructure;635
11.2.4.4.1;4.4.1 Effect of freezing on quality of frozen food;635
11.2.4.4.2;4.4.2 Influence of power ultrasound on the microstructure of frozen food;636
11.2.4.5;4.5 Preventing incrustation on a cold surface;636
11.2.5;5 Factors affecting power ultrasound efficiency;637
11.2.5.1;5.1 Acoustic power level;637
11.2.5.2;5.2 Acoustic duration;638
11.2.6;6 Embodiment of applications;639
11.2.6.1;6.1 Freezing of ice cream inside SSHE;639
11.2.6.2;6.2 Manufacture of moulded frozen products;641
11.2.6.3;6.3 Freezing and frozen storage of fresh foodstuffs;641
11.2.7;7 Conclusions;642
11.2.8;References;643
11.3;24. High-Pressure Freezing;646
11.3.1;1 Introduction;646
11.3.2;2 High-pressure freezing;647
11.3.2.1;2.1 Types of high-pressure freezing processes;648
11.3.2.1.1;2.1.1 High-pressure assisted freezing;649
11.3.2.1.1.1;2.1.1.1 Description of the process;649
11.3.2.1.1.2;2.1.1.2 Quality of pressure-assisted frozen foods;651
11.3.2.1.2;2.1.2 High-pressure shift freezing;652
11.3.2.1.2.1;2.1.2.1 Description of the process;652
11.3.2.1.2.2;2.1.2.2 Quality of high-pressure shift frozen foods;653
11.3.2.1.3;2.1.3 High-pressure induced freezing;656
11.3.2.2;2.2 Use of additives;656
11.3.2.3;2.3 Microbial and enzymatic inactivation;658
11.3.3;3 Modelling high-pressure freezing processes;658
11.3.3.1;3.1 Thermophysical properties under pressure;659
11.3.3.2;3.2 Temperature variation after an adiabatic pressure change;660
11.3.3.3;3.3 Convective phenomena;660
11.3.3.4;3.4 Modelling high-pressure assisted freezing processes;661
11.3.3.5;3.5 Modelling high-pressure shift freezing processes;661
11.3.3.6;3.6 Future perspectives: thermal control of high-pressure freezing processes;664
11.3.4;4 Conclusions;665
11.3.5;Nomenclature;666
11.3.6;References;666
11.4;25. Controlling the Freezing Process with Antifreeze Proteins;672
11.4.1;1 Introduction;672
11.4.2;2 Antifreeze proteins;674
11.4.2.1;2.1 Ice and freeze survival;674
11.4.2.2;2.2 The discovery of AFPs;677
11.4.2.3;2.3 AFP structures and evolution;681
11.4.2.4;2.4 Mechanisms of AFP activity;685
11.4.2.5;2.5 The use of AFPs in food preservation;688
11.4.3;3 Conclusions;690
11.4.4;References;691
12;Part 6 Minimal Processing;694
12.1;26. Minimal Fresh Processing of Vegetables, Fruits and Juices;696
12.1.1;1 Introduction;697
12.1.2;2 Factors and processing operations that affect quality of minimally fresh processed plant foods;700
12.1.2.1;2.1 Plant material;701
12.1.2.2;2.2 Processing line, distribution and storage conditions;703
12.1.2.2.1;2.2.1 Processing line;703
12.1.2.2.1.1;2.2.1.1 Whole product washing;704
12.1.2.2.1.2;2.2.1.2 Peeling and cutting;704
12.1.2.2.1.3;2.2.1.3 Washing and disinfection;706
12.1.2.2.1.4;2.2.1.4 Dewatering;708
12.1.2.2.2;2.2.2 Distribution and storage conditions;709
12.1.3;3 Emerging technologies for keeping microbial and sensory quality of minimally fresh processed fruits and vegetables;710
12.1.3.1;3.1 Disinfection;710
12.1.3.1.1;3.1.1 Hydrogen peroxide;711
12.1.3.1.2;3.1.2 Acidic electrolysed water;711
12.1.3.1.3;3.1.3 Chlorine dioxide;712
12.1.3.1.4;3.1.4 Organic acids;712
12.1.3.1.5;3.1.5 Ozone;713
12.1.3.1.6;3.1.6 Hot water treatments;714
12.1.3.1.7;3.1.7 UV-C radiation;714
12.1.3.2;3.2 Other emerging techniques;716
12.1.3.2.1;3.2.1 Biocontrol;716
12.1.3.2.2;3.2.2 Novel MAP;717
12.1.3.2.3;3.2.3 Genetic engineering technology;718
12.1.4;4 Emerging technologies of minimally fresh processed fruit juices;718
12.1.4.1;4.1 Pulsed electric fields;720
12.1.4.2;4.2 High hydrostatic pressure;720
12.1.5;5 Conclusions;721
12.1.6;References;722
12.2;27. Minimal Processing of Ready Meals;736
12.2.1;1 Introduction;736
12.2.2;2 Design of total system;737
12.2.2.1;2.1 Solid/liquid mixtures;738
12.2.2.2;2.2 Solid foods;739
12.2.2.3;2.3 Consumer packs;739
12.2.3;3 Cook-chill;740
12.2.4;4 Cook-freeze;741
12.2.5;5 Sous-vide;742
12.2.6;6 Novel and alternative processing options;744
12.2.6.1;6.1 Microwave heating;744
12.2.6.2;6.2 Ohmic heating;747
12.2.6.3;6.3 Hydrostatic processing;748
12.2.6.4;6.4 Surface decontamination techniques;748
12.2.6.5;6.5 Aseptic processing;749
12.2.6.6;6.6 Irradiation;749
12.2.7;7 Conclusions;750
12.2.8;References;750
12.3;28. Modified Atmosphere Packaging for Minimally Processed Foods;752
12.3.1;1 Introduction;752
12.3.2;2 Properties of packaged food;753
12.3.2.1;2.1 Optimal gas atmospheres;753
12.3.2.2;2.2 Gas solubility in foods;755
12.3.2.3;2.3 Tissue respiration;757
12.3.2.3.1;2.3.1 Respiration rate measurement;757
12.3.2.3.2;2.3.2 Respiration models;759
12.3.3;3 Properties of packaging materials;762
12.3.3.1;3.1 Film permeability;762
12.3.3.2;3.2 Package configuration;765
12.3.3.3;3.3 Gas scavenger and generator systems;766
12.3.4;4 Modified atmosphere packaging design;766
12.3.4.1;4.1 Barrier systems;766
12.3.4.2;4.2 Steady-state systems;767
12.3.5;5 Conclusions;769
12.3.6;Nomenclature;769
12.3.7;References;771
13;Index;776
13.1;A;776
13.2;B;776
13.3;C;777
13.4;D;777
13.5;E;777
13.6;F;778
13.7;G;779
13.8;H;779
13.9;I;780
13.10;J;780
13.11;L;780
13.12;M;780
13.13;N;782
13.14;O;782
13.15;P;783
13.16;R;785
13.17;S;785
13.18;T;786
13.19;U;786
13.20;V;787
13.21;W;787
13.22;Y;787




