E-Book, Englisch, Band 297, 305 Seiten
Sun / Liao Responsive Nanomaterials for Sustainable Applications
1. Auflage 2020
ISBN: 978-3-030-39994-8
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, Band 297, 305 Seiten
Reihe: Springer Series in Materials Science
ISBN: 978-3-030-39994-8
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
This book addresses the fabrication of responsive functional nanomaterials and their use in sustainable energy and environmental applications. Responsive functional nanomaterials can change their physiochemical properties to adapt to their environment. Accordingly, these novel materials are playing an increasingly important role in a diverse range of applications, such as sensors and actuators, self-healing materials, separation, drug delivery, diagnostics, tissue engineering, functional coatings and textiles. This book reports on the latest advances in responsive functional nanomaterials in a wide range of applications and will appeal to a broad readership across the fields of materials, chemistry, sustainable energy, environmental science and nanotechnology.
Autoren/Hrsg.
Weitere Infos & Material
1;Preface;6
2;Contents;9
3;Contributors;14
4;1 Photon-Responsive Nanomaterials for Solar Cells;16
4.1;1.1 Introduction;16
4.2;1.2 Dye-Sensitised Solar Cells;18
4.2.1;1.2.1 DSSC Device Structure and Working Principle;18
4.2.2;1.2.2 Electron Transporting Materials in DSSCs;20
4.2.3;1.2.3 TiO2-Based Photoanodes;20
4.2.4;1.2.4 Effect of Morphology of TiO2 on DSSC Performance;22
4.2.5;1.2.5 TiO2-Based Light-Scattering Materials;24
4.2.6;1.2.6 ZnO-Based Photoanodes;26
4.2.7;1.2.7 Effect of ZnO Morphology on DSSC Performance;26
4.2.8;1.2.8 Effect of Light Scattering of ZnO;28
4.2.9;1.2.9 Other Metal Oxides Used as Photoanode in DSSCs;30
4.3;1.3 Semiconductor-Sensitised Solar Cells;30
4.4;1.4 Photo-Response Nanomaterials Used Quantum Dot-Sensitised Solar Cells (QDSCs);30
4.4.1;1.4.1 Electron Transporting Materials;30
4.4.2;1.4.2 TiO2-Based Photoanodes for QDSCs;31
4.4.3;1.4.3 ZnO-Based Photoanodes in QDSCs;36
4.4.4;1.4.4 Other Types of ETMs Used in QDSCs;38
4.4.5;1.4.5 Semiconductor QD Light Absorbing Materials in QDSCs;39
4.4.6;1.4.6 Binary QD-Based Light Absorber;40
4.4.7;1.4.7 Ternary and Quaternary QD’s Light Absorbing Material System;43
4.4.8;1.4.8 Core/Shell QD-Based Light Absorber;44
4.4.9;1.4.9 Co-sensitised QDs;45
4.4.10;1.4.10 Organic–Inorganic Hybrid QDs Used in Solar Cells;46
4.5;1.5 Perovskite Solar Cells;48
4.5.1;1.5.1 n-Type Photonic-Responsive Materials;49
4.5.2;1.5.2 TiO2-Based Electron Transporting Materials;49
4.5.3;1.5.3 ZnO-Based Electron Transporting Materials for PSCs;52
4.5.4;1.5.4 SnO2-Based Electron Transporting Materials in PSCs;54
4.5.5;1.5.5 Other Metal-Oxide Scaffold Materials Used in PSCs;56
4.5.6;1.5.6 p-Type Semiconductor Nanomaterials in PSCs;57
4.5.7;1.5.7 Nickel Oxide;57
4.5.8;1.5.8 Copper-Based Inorganic Hole Transport Nanomaterials in PSCs;59
4.5.9;1.5.9 Vanadium Oxide;60
4.5.10;1.5.10 Molybdenum Oxide-Based HTM;61
4.5.11;1.5.11 Tungsten Oxide-Based HTM;61
4.6;1.6 Summary and Outlook;62
4.7;References;62
5;2 Microwave-Responsive Nanomaterials for Catalysis;79
5.1;2.1 Introduction;79
5.2;2.2 The Principle of Microwave Heating;80
5.2.1;2.2.1 Microwave Heating;80
5.2.2;2.2.2 The Mechanism of Microwave Heating;81
5.2.3;2.2.3 Microwave Heating in Catalytic Reactions;83
5.3;2.3 Microwave-Responsive Catalysts;84
5.3.1;2.3.1 The Principle of Microwave-Responsive Catalysts;84
5.3.2;2.3.2 Catalytic Performance Evaluation;87
5.3.3;2.3.3 Materials for Microwave-Responsive Catalysts;87
5.4;2.4 The State of Art of Microwave-Responsive Catalysts in Different Reactions;88
5.4.1;2.4.1 Liquid-Phase Organic Synthesis;88
5.4.2;2.4.2 Gas-Phase Reaction;91
5.4.3;2.4.3 Solid Biomass Pyrolysis;94
5.5;2.5 Strategies to Enhance the Microwave Thermal Effect;97
5.5.1;2.5.1 Integrating Magnetic Loss Materials;97
5.5.2;2.5.2 Morphology Control;98
5.5.3;2.5.3 Heteroatoms Doping;98
5.6;2.6 Summary and Future Perspectives;100
5.7;References;100
6;3 Self-responsive Nanomaterials for Flexible Supercapacitors;106
6.1;3.1 Introduction;107
6.2;3.2 Introduction of Supercapacitors;108
6.2.1;3.2.1 The Structure of Supercapacitors;108
6.2.2;3.2.2 The Energy Storage Mechanisms of Supercapacitors;109
6.2.3;3.2.3 The Categorization of Supercapacitors;111
6.2.4;3.2.4 Characteristics of Supercapacitors;112
6.3;3.3 Flexible Supercapacitors;113
6.3.1;3.3.1 Electrode Materials;114
6.3.2;3.3.2 Flexible Substrates;121
6.3.3;3.3.3 Electrolytes;123
6.4;3.4 Strategies for Flexible Supercapacitors Construction;125
6.4.1;3.4.1 1D Wire Supercapacitors;126
6.4.2;3.4.2 2D Flexible Planar Supercapacitors;133
6.5;3.5 Self-responsive Flexible Integrated System;139
6.5.1;3.5.1 Flexible Capacitor-Sensor Integrated System;139
6.5.2;3.5.2 Flexible Capacitor-Energy-Collection-Storage-Sensing System;141
6.6;3.6 Future Trends;143
6.7;References;145
7;4 Magnetic Responsive MnO2 Nanomaterials;152
7.1;4.1 Introduction;152
7.1.1;4.1.1 Background;152
7.1.2;4.1.2 The Phase of MnO2;153
7.1.3;4.1.3 Electronic Distribution and d-Orbit of Mn;154
7.2;4.2 Magnetism;156
7.2.1;4.2.1 Intrinsic Magnetism;157
7.2.2;4.2.2 Ions-Induced Magnetism;163
7.2.3;4.2.3 The Effect of Exposed Surfaces on Magnetism of MnO2;164
7.2.4;4.2.4 The Effect of Size and Shape on Magnetism of MnO2;165
7.3;4.3 The Applications of MnO2 Magnetism;166
7.4;4.4 Summary;171
7.5;References;172
8;5 Hydrogel Responsive Nanomaterials for Colorimetric Chemical Sensors;177
8.1;5.1 Introduction;177
8.2;5.2 Synthesis of Hydrogel;179
8.3;5.3 Sensitive Mechanism of Hydrogel;179
8.3.1;5.3.1 Immobilizing Ions on the Hydrogel;180
8.3.2;5.3.2 Changing the Crosslinking Density;182
8.3.3;5.3.3 Variation in the solubility of the Hydrogel Polymer;182
8.4;5.4 Chemical Sensors Based on Stimuli-Responsive Hydrogel;183
8.4.1;5.4.1 pH Sensor;183
8.4.2;5.4.2 Ion Sensor;190
8.4.3;5.4.3 Surfactant Sensor;193
8.4.4;5.4.4 Solvent Sensor;195
8.4.5;5.4.5 Humidity Sensor;197
8.4.6;5.4.6 Glucose Sensor;198
8.4.7;5.4.7 Aldehydes Sensor;200
8.4.8;5.4.8 Hydrogel Sensor Based on Strong Polyelectrolytes;200
8.5;5.5 Conclusion and Outlook;202
8.6;References;202
9;6 Interfacial Responsive Functional Oxides for Nanoelectronics;209
9.1;6.1 Introduction;209
9.2;6.2 Morphotropic Phase Boundaries;210
9.2.1;6.2.1 Nanoscale Structural Transformations;211
9.2.2;6.2.2 Elasticity Mapping Across MPBs;213
9.2.3;6.2.3 Mechanical Injection of MPBs and Phase Transition Yield Strength;215
9.2.4;6.2.4 Elastic Anomalies During Phase Transitions;218
9.2.5;6.2.5 Critical MPB;222
9.3;6.3 Summary and Outlook;224
9.4;References;224
10;7 Heat and Electro-Responsive Nanomaterials for Smart Windows;227
10.1;7.1 Introduction;227
10.2;7.2 Responsive Nanomaterials for Thermochromic Smart Windows;230
10.2.1;7.2.1 Vanadium Dioxide-Based Thermochromic Nanomaterials;230
10.2.2;7.2.2 Polymer-Based Thermochromic Nanomaterials;235
10.2.3;7.2.3 Halide Perovskite-Based Thermochromic Nanomaterials;238
10.3;7.3 Responsive Nanomaterials for Electrochromic Smart Windows;241
10.3.1;7.3.1 Metal Oxides-Based Electrochromic Nanomaterials;242
10.3.2;7.3.2 2D Electrochromic Nanomaterials;246
10.4;7.4 Conclusion and Outlook;247
10.5;References;248
11;8 Proton-Responsive Nanomaterials for Fuel Cells;256
11.1;8.1 Proton Conduction in Oxides;256
11.2;8.2 Proton-Conducting Electrolytes;257
11.2.1;8.2.1 Reducing the Specific Grain Boundary Resistance;258
11.2.2;8.2.2 Reducing the Overall Grain Boundary Resistance;262
11.3;8.3 Anode Nanomaterials for Protonic SOFCs;263
11.4;8.4 Cathode Nanomaterials for Protonic SOFCs;266
11.5;8.5 Conclusions;273
11.6;References;275
12;9 Thermo-Responsive Nanomaterials for Thermoelectric Generation;279
12.1;9.1 Introduction;279
12.2;9.2 Recent Advances in Thermoelectric Materials;281
12.3;9.3 Electrical Performance Enhancement;283
12.4;9.4 Lattice Thermal Conductivity Suspension;285
12.5;9.5 Efficiency of Prototype Thermoelectric Modules;291
12.6;9.6 Devices and Applications;292
12.7;9.7 Conclusion and Outlook;298
12.8;References;299
13;Index;304




