Buch, Englisch, Band 1778, 408 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 1290 g
Buch, Englisch, Band 1778, 408 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 1290 g
Reihe: Lecture Notes in Computer Science
ISBN: 978-3-540-67305-7
Verlag: Springer Berlin Heidelberg
The 26 revised full papers presented together with an introductory overview by the volume editors have been through a twofold process of careful reviewing and revision. The papers are organized in the following topical sections: structured connectionism and rule representation; distributed neural architectures and language processing; transformation and explanation; robotics, vision, and cognitive approaches.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Naturwissenschaften Biowissenschaften Biowissenschaften Neurobiologie, Verhaltensbiologie
- Mathematik | Informatik EDV | Informatik Technische Informatik Hochleistungsrechnen, Supercomputer
- Mathematik | Informatik EDV | Informatik Informatik Logik, formale Sprachen, Automaten
- Medizin | Veterinärmedizin Medizin | Public Health | Pharmazie | Zahnmedizin Klinische und Innere Medizin Neurologie, Klinische Neurowissenschaft
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz Wissensbasierte Systeme, Expertensysteme
Weitere Infos & Material
An Overview of Hybrid Neural Systems.- An Overview of Hybrid Neural Systems.- Structured Connectionism and Rule Representation.- Layered Hybrid Connectionist Models for Cognitive Science.- Types and Quantifiers in SHRUTI – A Connectionist Model of Rapid Reasoning and Relational Processing.- A Recursive Neural Network for Reflexive Reasoning.- A Novel Modular Neural Architecture for Rule-Based and Similarity-Based Reasoning.- Addressing Knowledge-Representation Issues in Connectionist Symbolic Rule Encoding for General Inference.- Towards a Hybrid Model of First-Order Theory Refinement.- Distributed Neural Architectures and Language Processing.- Dynamical Recurrent Networks for Sequential Data Processing.- Fuzzy Knowledge and Recurrent Neural Networks: A Dynamical Systems Perspective.- Combining Maps and Distributed Representations for Shift-Reduce Parsing.- Towards Hybrid Neural Learning Internet Agents.- A Connectionist Simulation of the Empirical Acquisition of Grammatical Relations.- Large Patterns Make Great Symbols: An Example of Learning from Example.- Context Vectors: A Step Toward a “Grand Unified Representation”.- Integration of Graphical Rules with Adaptive Learning of Structured Information.- Transformation and Explanation.- Lessons from Past, Current Issues, and Future Research Directions in Extracting the Knowledge Embedded in Artificial Neural Networks.- Symbolic Rule Extraction from the DIMLP Neural Network.- Understanding State Space Organization in Recurrent Neural Networks with Iterative Function Systems Dynamics.- Direct Explanations and Knowledge Extraction from a Multilayer Perceptron Network that Performs Low Back Pain Classification.- High Order Eigentensors as Symbolic Rules in Competitive Learning.- Holistic Symbol Processing and theSequential RAAM: An Evaluation.- Robotics, Vision and Cognitive Approaches.- Life, Mind, and Robots.- Supplementing Neural Reinforcement Learning with Symbolic Methods.- Self-Organizing Maps in Symbol Processing.- Evolution of Symbolisation: Signposts to a Bridge between Connectionist and Symbolic Systems.- A Cellular Neural Associative Array for Symbolic Vision.- Application of Neurosymbolic Integration for Environment Modelling in Mobile Robots.