Sundaravadivazhagan / Raj / Govardhanan | Interpretable and Trustworthy AI | Buch | 978-1-032-96063-0 | sack.de

Buch, Englisch, 416 Seiten, Format (B × H): 156 mm x 234 mm, Gewicht: 453 g

Sundaravadivazhagan / Raj / Govardhanan

Interpretable and Trustworthy AI

Techniques and Frameworks
1. Auflage 2025
ISBN: 978-1-032-96063-0
Verlag: Taylor & Francis Ltd

Techniques and Frameworks

Buch, Englisch, 416 Seiten, Format (B × H): 156 mm x 234 mm, Gewicht: 453 g

ISBN: 978-1-032-96063-0
Verlag: Taylor & Francis Ltd


Users expect proper explanation and interpretability of all the decisions being taken by machine and deep learning (ML/DL) algorithms. Interpretable and Trustworthy AI: Techniques and Frameworks covers key requirements for interpretability and trustworthiness of AI models and how these needs can be met. This book is structured in three main sections exploring artificial intelligence's impact, limitations, and solutions.

The first section examines AI's role as a transformative technological paradigm. It explores how AI drives business advancement through intelligent software solutions, enabling automation, augmentation, and acceleration of IT-enabled business processes. The section establishes AI's fundamental capacity to envision and implement sustainable business transformations.

The second section addresses critical challenges in AI adoption, focusing on two key concerns:

- AI Interpretability: Models typically optimize for accuracy but struggle to capture real-world costs, especially regarding ethics and fairness. Interpretability features help understand model learning processes, available information, and decision justifications within real-world contexts.

- Trustworthy AI: Business leaders demand responsible AI solutions that prioritize human needs, safety, and privacy. Researchers are developing methods to enhance trust in AI models and their conclusions to accelerate adoption.

The final section presents techniques and approaches for creating sustainable, interpretable, and trustworthy AI models. It explores model-agnostic frameworks and methodologies designed to

With its comprehensive structure, the book provides a comprehensive examination of AI's potential, its current limitations, and pathways to overcome these challenges for wider adoption.

Sundaravadivazhagan / Raj / Govardhanan Interpretable and Trustworthy AI jetzt bestellen!

Zielgruppe


Postgraduate

Weitere Infos & Material


1. Demystifying AI: A Comparative Study on Artificial General Intelligence and Artificial Superintelligence 2. Interpretable and Trustworthy Sleep Pattern Analysis for Sleep Disorders Using Explainable AI (XAI) Techniques 3. Navigating the Landscape of Interpretable and Trustworthy AI: Key Challenges and Solutions 4. Emerging Trends in Deep Learning 5. Deep Learning: Innovations, Applications, and Future Directions 6. Generative Adversarial Networks: Architecture, Training Dynamics, Applications, and Future Directions in AI 7. Generative Adversarial Networks in Artificial Intelligence: Advances, Applications, and Future Directions 8. Local Interpretable Model Agnostic Explanations (LIME) 9. Analysis of SHAP-Based Interpretable Feature Selection Techniques for Advancing Healthcare Decision-Making 10. DALEX (Model Agnostic Exploration, Explanation and Learning Implementation in Interpretable AI) 11. Bridging Ideas to Reality: Tools and Technologies for Interpretable and Trustworthy AI 12. AI Audit and Compliance Frameworks: Building Trust Through Systematic Validation 13. Data Privacy and Security 14. Interpretable AI in Healthcare: Frameworks, Applications, and Future Directions 15. AI Applications for Finance and Banking: Techniques, Challenges, and Future Directions 16. Interpretable AI in Finance: Enhancing Transparency and Trust 17. SkinGAN: A StyleGAN-Based Framework for Synthetic Generation of Rare Skin Lesion Images to Enhance Diagnostic Sensitivity in Dermatology 18. Navigating the Challenges of Interpretable Machine Learning


Dr. Pethuru Raj is chief architect at the Edge AI Division of Reliance Jio Platforms Ltd, Bangalore, India.

Dr. G. Kousalya is a professor at the Department of Computer Science and Engineering, Coimbatore Institute of Technology, Coimbatore, India.

Dr. B. Sundaravadivazhagan is affiliated with the Department of Information Technology, The University of Technology and Applied Sciences-Al Mussanah, Oman.

Dr. Shubham Mahajan is an assistant professor at the Amity School of Engineering & Technology, Amity University, Haryana, India.

Dr. M. Nalini is an associate professor at the Department of Computer Science and Business Systems, S.A. Engineering College, Tamil Nadu, India.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.