Tabia / Davis | Scalable Uncertainty Management | Buch | 978-3-030-58448-1 | sack.de

Buch, Englisch, Band 12322, 297 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 476 g

Reihe: Lecture Notes in Computer Science

Tabia / Davis

Scalable Uncertainty Management

14th International Conference, SUM 2020, Bozen-Bolzano, Italy, September 23-25, 2020, Proceedings
1. Auflage 2020
ISBN: 978-3-030-58448-1
Verlag: Springer International Publishing

14th International Conference, SUM 2020, Bozen-Bolzano, Italy, September 23-25, 2020, Proceedings

Buch, Englisch, Band 12322, 297 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 476 g

Reihe: Lecture Notes in Computer Science

ISBN: 978-3-030-58448-1
Verlag: Springer International Publishing


This book constitutes the refereed proceedings of the 14th International Conference on Scalable Uncertainty Management, SUM 2020, which was held in Bozen-Bolzano, Italy, in September 2020.
The 12 full, 7 short papers presented in this volume were carefully reviewed and selected from 30 submissions. Besides that, the book also contains 2 abstracts of invited talks, 2 tutorial papers, and 2 PhD track papers. The conference aims to gather researchers with a common interest in managing and analyzing imperfect information from a wide range of fields, such as artificial intelligence and machine learning, databases, information retrieval and data mining, the semantic web and risk analysis.

Due to the Corona pandemic SUM 2020 was held as an virtual event.

Tabia / Davis Scalable Uncertainty Management jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


Symbolic Logic Meets Machine Learning: A Brief Survey in Infinite Domains.- Score-Based Explanations in Data Management and Machine Learning.- From Ppossibilistic Rule-Based Systems to Machine Learning.- Logic, Probability and Action: A Situation Calculus Perspective.- When Nominal Analogical Proportions do not Fail.- Measuring Disagreement with Interpolants.- Inferring from an imprecise Plackett–Luce model: Application to Label Ranking.- Inference with Choice Functions Made Practical.- A Formal Learning Theory for Three-way Clustering.- Belief Functions for Safety Arguments Confidence Estimation.- Incremental Elicitation of Capacities for the Sugeno Integral with a Maximum Approach.- Computable Randomness is About More than Probabilities.- Equity in Learning Problems: an OWA Approach.- Conversational Recommender System by Bayesian Methods.- Dealing with Atypical Instances in Evidential Decision-Making.- Evidence Theory Based Combination of Frequent Chronicles for Failure Prediction.-Rule-Based Classification for Evidential Data.- Undecided Voters as Set-Valued Information -- Towards Forecasts under Epistemic Imprecision.- Multi-Dimensional Stable Matching Problems in Abstract Argumentation.- Modal Interpretation of Formal Concept Analysis for Incomplete Representations.- A Symbolic Approach for Counterfactual Explanations.- Modelling Multivariate Ranking Functions with Min-Sum Networks.- An Algorithm for the Contension Inconsistency Measure using Reductions to Answer Set Programming.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.