Tan / Tian / Ng | Bayesian Missing Data Problems | Buch | 978-1-4200-7749-0 | sack.de

Buch, Englisch, 346 Seiten, Format (B × H): 164 mm x 245 mm, Gewicht: 627 g

Reihe: Chapman & Hall/CRC Biostatistics Series

Tan / Tian / Ng

Bayesian Missing Data Problems

EM, Data Augmentation and Noniterative Computation
1. Auflage 2009
ISBN: 978-1-4200-7749-0
Verlag: Taylor & Francis Ltd

EM, Data Augmentation and Noniterative Computation

Buch, Englisch, 346 Seiten, Format (B × H): 164 mm x 245 mm, Gewicht: 627 g

Reihe: Chapman & Hall/CRC Biostatistics Series

ISBN: 978-1-4200-7749-0
Verlag: Taylor & Francis Ltd


Bayesian Missing Data Problems: EM, Data Augmentation and Noniterative Computation presents solutions to missing data problems through explicit or noniterative sampling calculation of Bayesian posteriors. The methods are based on the inverse Bayes formulae discovered by one of the author in 1995. Applying the Bayesian approach to important real-world problems, the authors focus on exact numerical solutions, a conditional sampling approach via data augmentation, and a noniterative sampling approach via EM-type algorithms.

After introducing the missing data problems, Bayesian approach, and posterior computation, the book succinctly describes EM-type algorithms, Monte Carlo simulation, numerical techniques, and optimization methods. It then gives exact posterior solutions for problems, such as nonresponses in surveys and cross-over trials with missing values. It also provides noniterative posterior sampling solutions for problems, such as contingency tables with supplemental margins, aggregated responses in surveys, zero-inflated Poisson, capture-recapture models, mixed effects models, right-censored regression model, and constrained parameter models. The text concludes with a discussion on compatibility, a fundamental issue in Bayesian inference.

This book offers a unified treatment of an array of statistical problems that involve missing data and constrained parameters. It shows how Bayesian procedures can be useful in solving these problems.

Tan / Tian / Ng Bayesian Missing Data Problems jetzt bestellen!

Zielgruppe


Professional Practice & Development

Weitere Infos & Material


Introduction. Optimization, Monte Carlo Simulation and Numerical Integration. Exact Solutions. Discrete Missing Data Problems. Computing Posteriors in the EM-Type Structures. Constrained Parameter Problems. Checking Compatibility and Uniqueness. Appendix. References. Indices.


Ming T. Tan is Professor of Biostatistics in the Department of Epidemiology and Preventive Medicine at the University of Maryland School of Medicine and Director of the Division of Biostatistics at the University of Maryland Greenebaum Cancer Center.

Guo-Liang Tian is Associate Professor in the Department of Statistics and Actuarial Science at the University of Hong Kong.

Kai Wang Ng is Professor and Head of the Department of Statistics and Actuarial Science at the University of Hong Kong.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.