Tari / Wu / Li | Algorithms and Architectures for Parallel Processing | Buch | 978-981-97-0833-8 | sack.de

Buch, Englisch, 502 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 785 g

Reihe: Lecture Notes in Computer Science

Tari / Wu / Li

Algorithms and Architectures for Parallel Processing

23rd International Conference, ICA3PP 2023, Tianjin, China, October 20-22, 2023, Proceedings, Part I
2024
ISBN: 978-981-97-0833-8
Verlag: Springer Nature Singapore

23rd International Conference, ICA3PP 2023, Tianjin, China, October 20-22, 2023, Proceedings, Part I

Buch, Englisch, 502 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 785 g

Reihe: Lecture Notes in Computer Science

ISBN: 978-981-97-0833-8
Verlag: Springer Nature Singapore


The 7-volume set LNCS 14487-14493 constitutes the proceedings of the 23rd International Conference on Algorithms and Architectures for Parallel Processing, ICA3PP 2023, which took place in Tianjin, China, during October 2023.

The 145 full papers included in these proceedings were carefully reviewed and selected from 439 submissions. ICA3PP covers many dimensions of parallel algorithms and architectures; encompassing fundamental theoretical approaches; practical experimental projects; and commercial components and systems.

Tari / Wu / Li Algorithms and Architectures for Parallel Processing jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Short Video Account Influence Evaluation Model Based on Improved SF-UIR Algorithm.- Deep Hash Learning of Feature-Invariant Representation for Single-label and Multi-label Retrieval.- Generative Adversarial Network Based Asymmetric Deep Cross-modal Unsupervised Hashing.- CFDM-IME A Collaborative Fault Diagnosis Method For Intelligent Manufacturing Equipment.- DFECTS A Deep Fuzzy Ensemble Clusterer for Time Series.- Energy-aware Smart Task Scheduling in Edge Computing Networks with A3C.- BACTDS Blockchain-based Fined-grained Access Control Scheme with Traceablity for IoT Data Sharing.- DeepLat Achieving Minimum Worst Case Latency for DNN Inference with Batch-Aware Dispatching.- Privacy-Preserving and Reliable Distributed Federated Learning.- Joint Optimization of Request Scheduling and Container Prewarming in Serverless Computing.- Multi-Stage Optimization of Incentive Mechanisms for Mobile Crowd Sensing based on Top-Trading Cycles.- A Chained Forwarding Mechanism for Large Messages.- TDC Pool-level object cache replacement algorithm based on temperature density.- Smart DAG Task Scheduling based on MCTS Method of Multi-Strategy Learning.- CT-Mixer Exploiting Multiscale Design for Local-global Representations Learning.- FedQL Q-learning Guided Aggregation for Federated Learning.- An Adaptive Instruction Set Encoding Automatic Generation Method for VLIW.- FastDet Detecting Encrypted Malicious Traffic Faster via Early Exit.- Real-EVE Real-time Edge-assist Video Enhancement for Joint Denoising and Super-resolution.- Optimizing the Parallelism of Communication and Computation in Distributed Training Platform.- FedSC Compatible Gradient Compression for Communication-Efficient Federated Learning.- Joint Video Transcoding and Representation Selection for Edge-Assisted Multi-Party Video Conferencing.- Performance Comparison of Distributed DNN Training on Opticalversus Electrical Interconnect Systems.- Dynamic Path Planning Based on Traffic Flow Prediction and Traffic Light Status.- A Time Series Data Compression Co-processor Based on RISC-V Custom Instructions.- MSIN An Efficient Multi-head Self-Attention Framework for Inertial Navigation.- AbsorbDeadlock Resolution for 2.5D Modular Chiplet Based Systems.- A Multi-Server Authentication Scheme based on Fuzzy Extractor.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.