E-Book, Englisch, 469 Seiten
Tarokh New Directions in Wireless Communications Research
1. Auflage 2009
ISBN: 978-1-4419-0673-1
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, 469 Seiten
ISBN: 978-1-4419-0673-1
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
New Directions in Wireless Communications Research addresses critical issues in the design and performance analysis of current and future wireless system design. Intended for use by system designers and academic researchers, the contributions are by acknowledged international leaders in their field. Topics covered include: (1) Characterization of wireless channels; (2) The principles and challenges of OFDM; (3) Low-correlation sequences for communications; (4) Resource allocation in wireless systems; (5) Signal processing for wireless systems, including iterative systems collaborative beamforming and interference rejection and network coding; (6) Multi-user and multiple input-multiple output (MIMO) communications; (7) Cooperative wireless networks, cognitive radio systems and coded bidirectional relaying in wireless networks; (8) Fourth generation standards such as LTE and WiMax and standard proposals such as UMB. With chapters from some of the leading researchers in the field, this book is an invaluable reference for those studying and practicing in the field of wireless communications. The book provides the most recent information on topics of current interest to the research community including topics such as sensor networks, coding for networks, cognitive networks and many more.
Autoren/Hrsg.
Weitere Infos & Material
1;Preface;6
2;Contents;8
3;Measurement and Modeling of Wireless Channels ;25
3.1;David G. Michelson and Saeed S. Ghassemzadeh;25
3.1.1;Introduction;25
3.1.2;A Brief History;27
3.1.3;Characterization of Wireless Channels;28
3.1.4;Development of New Channel Models;33
3.1.5;Measurement of Wireless Channels;35
3.1.6;Recent Advances in Channel Modeling;37
3.1.6.1;Channel Models for Ultrawideband Wireless Systems;37
3.1.6.2;Channel Models for MIMO-Based Wireless Systems;40
3.1.6.3;Channel Models for Body Area Networks;42
3.1.6.4;Channel Models for Short-Range Vehicular Networks;44
3.1.6.5;Channel Models for 60GHz and Terahertz Systems;46
3.1.7;Conclusions;48
3.1.8;References;49
4;OFDM: Principles and Challenges ;52
4.1;Nicola Marchetti, Muhammad Imadur Rahman, Sanjay Kumar, and Ramjee Prasad;52
4.1.1;Introduction;52
4.1.2;History and Development of OFDM;53
4.1.3;The Benefit of Using Multi-carrier Transmission;54
4.1.4;OFDM Transceiver Systems;57
4.1.5;Analytical Model of OFDM System;58
4.1.5.1;Transmitter;58
4.1.5.2;Channel;60
4.1.5.3;Receiver;61
4.1.5.4;Sampling;64
4.1.6;Advantages of OFDM System;65
4.1.6.1;Combating ISI and Reducing ICI;65
4.1.6.2;Spectral Efficiency;66
4.1.6.3;Some Other Benefits of OFDM System;67
4.1.7;Disadvantages of OFDM System;68
4.1.7.1;Strict Synchronization Requirement;68
4.1.7.2;Peak-to-Average Power Ratio (PAPR);68
4.1.7.3;Co-channel Interference in Cellular OFDM;69
4.1.8;OFDM System Design Issues;69
4.1.8.1;OFDM System Design Requirements;69
4.1.8.2;OFDM System Design Parameters;70
4.1.9;Multi-carrier Based Access Techniques;72
4.1.9.1;Definition of Basic Schemes;72
4.1.10;Single-Carrier vs Multi-carrier, TDE vs FDE;75
4.1.10.1;Single-Carrier FDE;75
4.1.10.2;Single-Carrier vs Multi-carrier, FDE vs TDE;77
4.1.10.3;Analogies and Differences Between OFDM and SCFDE;77
4.1.10.4;Interoperability of SCFDE and OFDM;79
4.1.11;OFDMA: An Example of Future Applications;81
4.1.12;Conclusions;83
4.1.13;References;84
5;Recent Advances in Low-Correlation Sequences ;86
5.1;Gagan Garg, Tor Helleseth, and P. Vijay Kumar;86
5.1.1;Introduction;86
5.1.2;Cyclic Hadamard Difference Sets;87
5.1.2.1;Introduction;87
5.1.3;The Merit Factor of Binary Sequences;94
5.1.3.1;Introduction;94
5.1.4;Low-Correlation QAM Sequences;99
5.1.4.1;Preliminaries;100
5.1.4.2;Quaternary Family A;101
5.1.4.3;Canonical 16-QAM Family CQ;101
5.1.4.4;Extensions and Improvements;103
5.1.4.5;Example: Generation of a 16-QAM Sequence;106
5.1.5;Low-Correlation Zone Sequences;107
5.1.6;Additional Notes;109
5.1.6.1;Merit Factor;109
5.1.6.2;QAM Sequences;110
5.1.6.3;Low-Correlation Zone Sequences;110
5.1.7;Conclusions;111
5.1.8;References;111
6;Resource Allocation in Wireless Systems ;116
6.1;Jon W. Mark and Lian Zhao;116
6.1.1;Introduction;116
6.1.2;System Model;118
6.1.3;The Inverse of S;122
6.1.4;Convergence of Power Distribution Law;123
6.1.4.1;With Zero Disturbance;123
6.1.4.2;With Nonzero Disturbance;125
6.1.4.3;With Power Constraints;126
6.1.4.4;Capacity Analysis;128
6.1.5;Optimal Data Rate Allocation;129
6.1.5.1;Assumptions;129
6.1.5.2;Optimal Spreading Factor (OSF) Selection;130
6.1.5.3;Rate Selection for GRP;130
6.1.6;Joint Rate and Power Adaptation;131
6.1.6.1;OSF-PC;131
6.1.6.2;GRP-PC;132
6.1.7;Numerical Results;134
6.1.8;Conclusions;138
6.1.9;References;139
7;Iterative Receivers and Their Graphical Models ;141
7.1;Ezio Biglieri;141
7.1.1;Introduction;141
7.1.2;MAP Symbol Detection;141
7.1.2.1;Factor Graphs and the Sum--Product Algorithm;143
7.1.2.2;The Basic Factorization;145
7.1.3;Channel and Codes: A Menagerie of Factor Graphs;146
7.1.3.1;Modeling the Channel;146
7.1.3.2;Modeling the Code;148
7.1.4;Equalization;149
7.1.5;Multiuser Detection;152
7.1.6;MIMO Detection;153
7.1.7;Multilevel Coded Modulation;155
7.1.8;Convergence of the Iterative Algorithm;155
7.1.9;Conclusions;157
7.1.10;References;158
8;Fundamentals of Multi-user MIMO Communications ;160
8.1;Luca Sanguinetti and H. Vincent Poor;160
8.1.1;Introduction;160
8.1.2;System Model;161
8.1.3;Capacity;162
8.1.3.1;Capacity Region of the Gaussian MIMO MAC;163
8.1.3.2;Gaussian MIMO Broadcast Channel;171
8.1.4;Open- and Closed-Loop Systems;179
8.1.4.1;Open-Loop Systems;180
8.1.4.2;Closed-Loop Systems;181
8.1.5;System Design;181
8.1.5.1;Receiver Design for Uplink Transmissions;181
8.1.5.2;Transmitter Design for Downlink Transmissions;182
8.1.6;Limited Feedback Systems;188
8.1.6.1;Channel Quantization;188
8.1.6.2;Random Beamforming;189
8.1.6.3;Transceiver Optimization;190
8.1.7;Conclusions;190
8.1.8;References;191
9;Collaborative Beamforming ;195
9.1;Hideki Ochiai and Hideki Imai;195
9.1.1;Introduction;195
9.1.2;System Model and Beam Patterns of Fixed Nodes;197
9.1.2.1;Array Factor and Beam Pattern;198
9.1.2.2;Beam Patterns of Linear Arrays;200
9.1.2.3;Beam Patterns of Circular Arrays;203
9.1.3;Collaborative Beamforming by Randomly Distributed Nodes;205
9.1.3.1;Definition;206
9.1.3.2;Average Beam Patterns;208
9.1.3.3;Distribution of Beam Patterns;210
9.1.3.4;Distribution of Maxima in Sidelobe;214
9.1.4;Conclusions;216
9.1.5;References;217
10;Cooperative Wireless Networks ;218
10.1;Behnaam Aazhang, Chris B. Steger, Gareth B. Middleton,eserved @d = *@let@token and Brett Kaufman;218
10.1.1;Introduction;218
10.1.1.1;Overview;218
10.1.1.2;Physical Layer Cooperation;219
10.1.2;System Model;221
10.1.2.1;Wide Area Network;221
10.1.2.2;Multiple Flows and Flow Priority;222
10.1.2.3;Cooperative Building Blocks;223
10.1.3;Learning About the Environment: Network State Information;224
10.1.3.1;NSI Overhead Management;225
10.1.3.2;NSI Metric;225
10.1.4;Finding the Optimal Cooperative Path;226
10.1.4.1;Routing Cooperative Paths;226
10.1.4.2;Trellis Representation;227
10.1.4.3;Timing, Interference, and Duplexing Management;228
10.1.4.4;Traversal Algorithms;229
10.1.5;Network Discovery;229
10.1.5.1;Filling the Trellis: Gathering States, Edges, and NSI;230
10.1.5.2;Filling the Trellis: Metanodes;231
10.1.6;Conclusions;231
10.1.7;References;232
11;Interference Rejection and Management ;236
11.1;Arun Batra, James R. Zeidler, John G. Proakis, and Laurence B. Milstein;236
11.1.1;Introduction;236
11.1.2;Self-Interference Among Cooperating Systems;237
11.1.2.1;Interference Suppression to Enable Spectrum Sharing;237
11.1.2.2;Effects of Interference on Channel State Estimation;239
11.1.3;Interference Mitigation in Block-Modulated MulticarrierSystems;242
11.1.3.1;Interference Mitigation in an Uncoded Multicarrier System;243
11.1.3.2;Interference Mitigation in Coded Multicarrier Systems;252
11.1.3.3;Doppler Sensitivity of OFDM in Mobile Applications;254
11.1.4;Interference Suppression in Broadcast MIMO Systems;255
11.1.4.1;Linear Precoding of the Transmitted Signals;256
11.1.4.2;Nonlinear Precoding of the Transmitted Signals: The QR Decomposition;258
11.1.4.3;Vector Precoding;263
11.1.4.4;Lattice Reduction Method for Precoding;265
11.1.5;Conclusions;266
11.1.6;References;267
12;Cognitive Radio: From Theory to Practical Network Engineering ;270
12.1;Ekram Hossain, Long Le, Natasha Devroye, and Mai Vu;270
12.1.1;Introduction;270
12.1.2;Information-Theoretic Limits of Cognitive Networks;272
12.1.2.1;Cognitive Behavior: Interference Avoidance, Control, and Mitigation;272
12.1.2.2;Information-Theoretic Basics;273
12.1.2.3;Interference Avoidance: Spectrum Interweave;274
12.1.2.4;Interference Control: Spectrum Underlay;275
12.1.2.5;Interference Mitigation: Spectrum Overlay;278
12.1.3;Cognitive Sensing with Side Information;283
12.1.4;Interference Analysis;285
12.1.4.1;A Network with Beacons;286
12.1.4.2;A Network with Primary Exclusive Regions;287
12.1.5;Practical Cognitive Network Engineering: Interference Control Approach;288
12.1.5.1;Single-Antenna Case;289
12.1.5.2;Multiple Antenna Case;292
12.1.6;Practical Cognitive Network Engineering: Interference Avoidance Approach;292
12.1.6.1;Single-Hop Case;293
12.1.6.2;Multi-hop Case;301
12.1.7;Conclusions;302
12.1.8;References;303
13;Coded Bidirectional Relaying in Wireless Networks ;309
13.1;Petar Popovski and Toshiaki Koike-Akino;309
13.1.1;Introduction;309
13.1.2;Preliminaries;311
13.1.3;Two-Way Relaying with Decoding at the Relay;313
13.1.3.1;The Uplink Phase;313
13.1.3.2;The Broadcast Phase;314
13.1.3.3;Improved Broadcast Strategies;315
13.1.3.4;Numerical Illustration;318
13.1.4;Two-Way Relaying Without Decoding at the Relay;320
13.1.4.1;Amplify-and-Forward (AF);320
13.1.4.2;Denoise-and-Forward (DNF);321
13.1.4.3;Compress-and-Forward (CF);323
13.1.4.4;Numerical Illustration and Variations;324
13.1.5;Achieving the Two-Way Rates with Structured Codes;325
13.1.5.1;Parity-Check Codes for Binary Symmetric Channels;325
13.1.5.2;Gaussian Channel;327
13.1.6;Signaling Constellations for Finite Packet Lengths;330
13.1.6.1;XOR Denoising;330
13.1.6.2;Adaptive Denoising with Quintary Cardinality;331
13.1.6.3;End-to-End Throughput Performance;332
13.1.7;Conclusions;333
13.1.8;References;334
14;Minimum Cost Subgraph Algorithms for Static and Dynamic Multicasts with Network Coding ;335
14.1;Fang Zhao, Muriel Médard, Desmond Lun, and Asuman Ozdaglar;335
14.1.1;Introduction;335
14.1.2;Problem Formulation;338
14.1.2.1;Wireline Networks;338
14.1.2.2;Wireless Networks;340
14.1.3;Decentralized Min-cost Subgraph Algorithms for Static Multicast;342
14.1.3.1;Subgradient Method for Decentralized Subgraph Optimization;343
14.1.3.2;Convergence Rate Analysis;346
14.1.3.3;Initialization and Primal Solution Recovery;352
14.1.3.4;Simulation Results;353
14.1.4;Min-cost Subgraph Algorithms for Dynamic Multicasts;358
14.1.4.1;Nonrearrangeable Algorithm;358
14.1.4.2;Rearrangeable Algorithms;360
14.1.4.3;Simulation Results;363
14.1.5;Conclusions;365
14.1.6;References;366
15;Ultra Mobile Broadband (UMB) ;368
15.1;Masoud Olfat;368
15.1.1;Introduction;368
15.1.2;UMB Overall Architecture;369
15.1.3;UMB Physical Layer;372
15.1.3.1;Superframe Structure;373
15.1.3.2;UMB FL Channelization;377
15.1.3.3;Reverse Link in UMB;383
15.1.4;UMB MAC Layer;391
15.1.5;Other PHY/MAC-layer features in UMB;401
15.1.6;Conclusions;403
15.1.7;References;403
16;Mobile WiMAX;405
16.1;Masoud Olfat;405
16.1.1;Introduction;405
16.1.2;Standardization Process;406
16.1.2.1;WiMAX Forum;407
16.1.3;WiMAX Network Architecture;409
16.1.3.1;Network Reference Models;410
16.1.3.2;ASN profiles;411
16.1.3.3;Mobility Management;413
16.1.4;Physical Layer;415
16.1.4.1;S-OFDMA Frame Structure;417
16.1.4.2;Subchannel Permutation;418
16.1.4.3;Frame Structure;422
16.1.4.4;Channel Coding;423
16.1.4.5;Multiple Antenna Modes in Mobile WiMAX;425
16.1.4.6;Power Control and Link Adaptation;429
16.1.5;Medium Access Control Layer;432
16.1.5.1;Quality of Service;436
16.1.5.2;Power Saving Mode;437
16.1.5.3;Multicast Broadcast Services;438
16.1.5.4;Handoff;439
16.1.5.5;Security and Authentication in WiMAX;441
16.1.6;WiMAX Performance;442
16.1.7;Future Work Toward IMT-Advanced;443
16.1.7.1;Conclusions;444
16.1.8;References;445
17;An Overview of 3GPP Long-Term Evolution Radio AccessNetwork;446
17.1;Sassan Ahmadi;446
17.1.1;Introduction;446
17.1.1.1;Chronology of 3GPP Air Interface Technology Development;447
17.1.1.2;3GPP LTE System Requirements;448
17.1.2;Overall Network Architecture;449
17.1.3;LTE Protocol Structure;451
17.1.4;Overview of the LTE Physical Layer;453
17.1.4.1;Multiple Access Schemes;453
17.1.4.2;Operating Frequencies and Bandwidths;454
17.1.4.3;Frame Structure;457
17.1.4.4;Physical Resource Blocks;458
17.1.4.5;Modulation and Coding;459
17.1.4.6;Physical Channel Processing;459
17.1.4.7;Reference Signals;461
17.1.4.8;Physical Control Channels;463
17.1.4.9;Physical Random Access Channel;465
17.1.4.10;Cell Search;467
17.1.4.11;Link Adaptation;467
17.1.4.12;Multi-antenna Techniques in LTE;468
17.1.5;Overview of the LTE Layer 2;469
17.1.5.1;Logical and Transport Channels;470
17.1.5.2;ARQ and HARQ in LTE;473
17.1.5.3;Packet Data Convergence Sublayer (PDCP);473
17.1.6;Radio Resource Control Functions (RRC);473
17.1.7;Mobility Management and Handover in LTE;475
17.1.8;LTE Performance;477
17.1.9;Future Work Toward IMT-Advanced;477
17.1.10;Conclusions;479
17.1.11;References;479
18;Index;481




