Teixeira / Botta / Mangioni | Complex Networks XIV | Buch | 978-3-031-28275-1 | sack.de

Buch, Englisch, 169 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 436 g

Reihe: Springer Proceedings in Complexity

Teixeira / Botta / Mangioni

Complex Networks XIV

Proceedings of the 14th Conference on Complex Networks, CompleNet 2023
2023
ISBN: 978-3-031-28275-1
Verlag: Springer Nature Switzerland

Proceedings of the 14th Conference on Complex Networks, CompleNet 2023

Buch, Englisch, 169 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 436 g

Reihe: Springer Proceedings in Complexity

ISBN: 978-3-031-28275-1
Verlag: Springer Nature Switzerland


This book contains contributions in the area of Network Science, presented at the 14th International Conference on Complex Networks (CompleNet), 24-28 April, 2023 in Aveiro, Portugal. CompleNet is an international conference on complex networks that brings together researchers and practitioners from diverse disciplines—from sociology, biology, physics, and computer science—who share a passion to better understand the interdependencies within and across systems.  CompleNet is a venue to discuss ideas and findings about all types networks, from biological, to technological, to informational and social. It is this interdisciplinary nature of complex networks that CompleNet aims to explore and celebrate.

The audience of the work are professionals and academics working in Network Science, a highly-multidisciplinary field.

Teixeira / Botta / Mangioni Complex Networks XIV jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Brain’s Dynamic Functional Organization with Simultaneous EEG-fMRI Networks.- Comparative Study of Random Walks with One-step Memory on Complex Networks.- Network Entropy as a Measure of Socioeconomic Segregation in Residential and Employment Landscapes.- Community Structure in Transcriptional Regulatory Networks of Yeast Species.- Learned Monkeys: Emergent Properties of Deep Reinforcement Learning Generated Networks.- Targeted Attacks based on Networks Component Structure.- The Effect of Link Recommendation Algorithms on Network Centrality Disparities.- CoreGDM: Geometric Deep Learning Network Decycling and Dismantling.- The Impact of a Crisis Event on Predicting Social Media Virality.- Evaluating the Bayesian MRP Network Model for Estimating Heterogeneity in (Age-Stratified) Contact Patterns from Highly Selective Samples.- Academic Mobility as a Driver of Productivity: A Gender-centric Approach.- Getting the Boot? Predicting the Dismissal of Managers in Football.- Nature vs. Nurture in Science: The Effect of Researchers Segregation on Papers’ Citation Histories.- Using Vector Fields in the Modelling of Movements as Flows A Case Study with Cattle Trade Networks.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.