Buch, Englisch, Band 782, 280 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 606 g
Buch, Englisch, Band 782, 280 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 606 g
Reihe: Studies in Computational Intelligence
ISBN: 978-3-030-37829-5
Verlag: Springer International Publishing
This book provides step-by-step explanations of successful implementations and practical applications of machine learning. The book’s GitHub page contains software codes to assist readers in adapting materials and methods for their own use. A wide variety of applications are discussed, including wireless mesh network and power systems optimization; computer vision; image and facial recognition; protein prediction; data mining; and data discovery. Numerous state-of-the-art machine learning techniques are employed (with detailed explanations), including biologically-inspired optimization (genetic and other evolutionary algorithms, swarm intelligence); Viola Jones face detection; Gaussian mixture modeling; support vector machines; deep convolutional neural networks with performance enhancement techniques (including network design, learning rate optimization, data augmentation, transfer learning); spiking neural networks and timing dependent plasticity; frequent itemset mining; binary classification; and dynamic programming. This book provides valuable information on effective, cutting-edge techniques, and approaches for students, researchers, practitioners, and teachers in the field of machine learning.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik EDV | Informatik Daten / Datenbanken Data Mining
- Naturwissenschaften Biowissenschaften Angewandte Biologie Bioinformatik
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz
- Mathematik | Informatik EDV | Informatik Informatik Berechenbarkeitstheorie, Komplexitätstheorie
- Technische Wissenschaften Elektronik | Nachrichtentechnik Nachrichten- und Kommunikationstechnik
- Medizin | Veterinärmedizin Medizin | Public Health | Pharmazie | Zahnmedizin Medizin, Gesundheitswesen Medizinische Mathematik & Informatik
Weitere Infos & Material
Introduction.- Part 1: Machine learning concepts, methods, and software tools.- Overview.- Classifying algorithms.- Support vector machines.- Bayes classifiers.- Decision trees.- Clustering algorithms.- k-means and variants.- Gaussian mixture.- Association rules.- Optimization algorithms.- Genetic algorithms.- Swarm intelligence.- Deep learning,- Convolutional neural networks (CNN).- Other deep learning schema.- Part 2: Applications with implementations.- Protein secondary structure prediction.- Mapping heart disease risk.- Surgical performance monitoring.- Power grid control.- Conclusion.