Tichy / Schlickewei / Schmidt | Diophantine Approximation | E-Book | www.sack.de
E-Book

E-Book, Englisch, Französisch, 422 Seiten, eBook

Reihe: Developments in Mathematics

Tichy / Schlickewei / Schmidt Diophantine Approximation

Festschrift for Wolfgang Schmidt
2008
ISBN: 978-3-211-74280-8
Verlag: Springer Wien
Format: PDF
Kopierschutz: 1 - PDF Watermark

Festschrift for Wolfgang Schmidt

E-Book, Englisch, Französisch, 422 Seiten, eBook

Reihe: Developments in Mathematics

ISBN: 978-3-211-74280-8
Verlag: Springer Wien
Format: PDF
Kopierschutz: 1 - PDF Watermark



This volume contains 21 research and survey papers on recent developments in the field of diophantine approximation, which are based on lectures given at a conference at the Erwin Schrödinger-Institute (Vienna, 2003). The articles are either in the spirit of more classical diophantine analysis or of a geometric or combinatorial flavor. Several articles deal with estimates for the number of solutions of diophantine equations as well as with congruences and polynomials.

Tichy / Schlickewei / Schmidt Diophantine Approximation jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


1;CONTENTS;6
2;PREFACE;8
3;THE MATHEMATICAL WORK OF WOLFGANG SCHMIDT;9
3.1;Introduction;9
3.2;1 Geometry of numbers;9
3.3;2 Uniform distribution;10
3.4;3 Approximation of real numbers;11
3.5;4 Heights;12
3.6;5 Approximation of algebraic numbers by rationals;12
3.7;6 Norm form equations;14
3.8;7 Transcendental numbers;15
3.9;8 Riemann hypothesis for curves;16
3.10;9 Nonlinear approximation of real numbers;17
3.11;10 Zeros and small values of forms;18
3.12;11 Quadratic geometry of numbers;19
3.13;12 Approximation of algebraic numbers – quantitative results;19
3.14;13 Norm form equations – quantitative results;20
3.15;14 Linear recurrence sequences;21
3.16;Publications byW. Schmidt;22
3.17;Additional cited references;27
4;SCHÄFFER’S DETERMINANT ARGUMENT;29
4.1;1 Introduction;29
4.2;2 Proofs of Theorems 2 and 3;31
4.3;3 A lemma with four alternatives;38
4.4;4 Proof of Theorem 1;43
4.5;References;47
5;ARITHMETIC PROGRESSIONS AND TIC- TAC- TOE GAMES;48
5.1;1 Van der Waerden’s theorem;48
5.2;2 Hypercube Tic-Tac-Toe and positional games;53
5.3;3 Win vs. Weak Win;63
5.4;4 Old lower bounds;66
5.5;5 New lower bound results;72
5.6;6 More new lower bounds via games;76
5.7;7 Big Game–Small Game decomposition;85
5.8;8 How good are the new lower bounds? Strong Draw and Weak Win;91
5.9;References;99
6;METRIC DISCREPANCY RESULTS FOR SEQUENCES {nk x} AND DIOPHANTINE EQUATIONS;101
6.1;1 Introduction;101
6.2;2 Comments on conditions B, C and G;107
6.3;References;110
7;MAHLER’S CLASSIFICATION OF NUMBERS COMPARED WITH KOKSMA’S, II;112
7.1;1 Introduction;112
7.2;2 Results;113
7.3;3 An auxiliary result;116
7.4;4 The inductive construction;117
7.5;5 Completion of the proof of Theorem 2;122
7.6;6 Proof of Theorem 3;123
7.7;7 Proof of Theorem 4;124
7.8;References;126
8;RATIONAL APPROXIMATIONS TO A q-ANALOGUE OF p AND SOME OTHER q-SERIES;127
8.1;1 Introduction;127
8.2;2 Main results and reduction;128
8.3;3 Hypergeometric construction;130
8.4;4 Integral construction;135
8.5;5 Proofs;137
8.6;References;142
9;ORTHOGONALITY AND DIGIT SHIFTS IN THE CLASSICAL MEAN SQUARES PROBLEM IN IRREGULARITIES OF POINT DISTRIBUTION;144
9.1;1 Introduction;144
9.2;2 Linear distributions;146
9.3;3 Deduction of Theorem 1;149
9.4;4 Deduction of Theorem 2;150
9.5;5 Walsh functions;151
9.6;6 More weights and metrics;153
9.7;7 Approximation of the discrepancy function;153
9.8;8 Deduction of Theorem 5;158
9.9;9 Deduction of Theorems 3 and 4;159
9.10;References;161
10;APPLICATIONS OF THE SUBSPACE THEOREM TO CERTAIN DIOPHANTINE PROBLEMS;163
10.1;Introduction;163
10.2;The quotient problem;164
10.3;The d-th root problem;169
10.4;Integral points on certain affine varieties;171
10.5;References;175
11;A GENERALIZATION OF THE SUBSPACE THEOREM WITH POLYNOMIALS OF HIGHER DEGREE;177
11.1;1 Introduction;177
11.2;2 Twisted heights;181
11.3;3 Proof of Theorem 2.1;183
11.4;4 Height estimates;188
11.5;5 Proof of Theorem 1.3;193
11.6;References;199
12;ON THE DIOPHANTINE EQUATION Gn(x) = Gm(y) WITH Q(x, y) = 0;201
12.1;1 Introduction;201
12.2;2 Results;203
12.3;3 Proof of Theorem 1;206
12.4;4 Proof of Theorem 2;210
12.5;References;211
13;A CRITERION FOR POLYNOMIALS TO DIVIDE INFINITELY MANY k-NOMIALS;212
13.1;1 Introduction;212
13.2;2 The main results;213
13.3;3 Basic lemmas;215
13.4;4 Proofs;216
13.5;References;221
14;APPROXIMANTS DE PADÉ DES q-POLYLOGARITHMES;222
14.1;1 Introduction;222
14.2;2 Démonstration du Théorème 2;225
14.3;3 Confluence du Théorème 2 vers le Théorème 1;228
14.4;Références;231
15;THE SET OF SOLUTIONS OF SOME EQUATION FOR LINEAR RECURRENCE SEQUENCES;232
15.1;References;236
16;COUNTING ALGEBRAIC NUMBERS WITH LARGE HEIGHT I;237
16.1;References;243
17;CLASS NUMBER CONDITIONS FOR THE DIAGONAL CASE OF THE EQUATION OF NAGELL AND LJUNGGREN;244
17.1;1 Introduction;244
17.2;2 Cyclotomic fields;246
17.3;3 Classical results revisited; proofs of Theorems 1 and 2;255
17.4;4 General upper bounds;258
17.5;5 Lower bounds and proof of Theorem 4;269
17.6;6 Conclusion;271
17.7;References;272
18;CONSTRUCTION OF APPROXIMATIONS TO ZETA- VALUES;273
18.1;1 Introduction;273
18.2;2 Common denominator for coefficients of Ak(z);276
18.3;3 Upper bounds for the coefficients of Ak(x);282
18.4;4 Some examples;287
18.5;References;291
19;QUELQUES ASPECTS DIOPHANTIENS DES VARIÉTÉS TORIQUES PROJECTIVES;292
19.1;1 Introduction et résultats;292
19.2;2 Généralités sur les variétés toriques projectives;296
19.3;3 Équations et indices d’obstruction successifs;301
19.4;4 Volumes, hauteurs d’espaces tangents et degrés;307
19.5;5 Un théorème de Bézout pour les poids de Chow;310
19.6;6 Hauteur normalisée;315
19.7;7 Optimalité du théorème des minimums algébriques successifs;320
19.8;8 Poids de Chow et hauteur des diviseurs monomiaux;325
19.9;Références;334
20;UNE INÉGALITÉ DE LOJASIEWICZ ARITHMÉTIQUE;336
20.1;1 Résultat;336
20.2;2 Hauteurs;337
20.3;3 Minimum local;339
20.4;4 Minimum sur un pavé;341
20.5;5 Conclusion;342
20.6;Références;342
21;ON THE CONTINUED FRACTION EXPANSION OF A CLASS OF NUMBERS;343
21.1;1 Introduction;343
21.2;2 Notation and statements of the main results;344
21.3;3 Proof of Theorem 2.1;346
21.4;4 Proof of Theorem 2.2;348
21.5;5 Proof of Theorem 2.3;352
21.6;6 Proof of Theorem 2.4;355
21.7;References;357
22;THE NUMBER OF SOLUTIONS OF A LINEAR HOMOGENEOUS CONGRUENCE;358
22.1;References;365
23;A NOTE ON LYAPUNOV THEORY FOR BRUN ALGORITHM;366
23.1;1 Introduction;366
23.2;2 A skew product;368
23.3;3 Brun algorithm;370
23.4;References;374
24;ORBIT SUMS AND MODULAR VECTOR INVARIANTS;375
24.1;1 Introduction;375
24.2;2 Orbit sums;380
24.3;3 Proof of Theorem 1 and Corollary 2;399
24.4;4 A universal invariant;401
24.5;5 Proof of Theorem 3;402
24.6;References;406
25;NEW IRRATIONALITY RESULTS FOR DILOGARITHMS OF RATIONAL NUMBERS;407
25.1;1 Introduction;407
25.2;2 Double integrals and permutation groups related to the dilogarithm;408
25.3;3 Irrationality results for Li2(r/s);412
25.4;4 Concluding remarks;416
25.5;References;416

-Dedication to Wolfgang Tichy.-Schäffer´s Determinant Argument.-Arithmetic progressions and Tic-Tac-Toe games.-Metric discrepancy results for sequences {NkX } and Diophantine equations.-Mahler´s classification of numbers compared with Kosma´s, II.-Rational approximations to a q-analogue of p and some other q-series.-Orthogonality and digit shifts in the classical Mean Squares problem in irregularities of point distribution.-Applications of the Subspace Theorem to certain Diophantine problems.-A generalization of the Subspace Theorem with polynomials of higher degree.-On the Diophantine equation Gn (x) = Gm (y) with Q(x,y) = 0.-A criterion for polynomials to divide infinitely many k-nomials.-Approximants de Padê des q-Polylogarithmes.-The set of solutions of some equation for linear recurrence sequences.-Counting algebraic numbers with large height I.-Class number conditions for the diagonal case of the equation of Nagell-Ljunggren.-Construction of approximations to zeta-values.-Quelques aspects Diophantiens des variétés Toriques Projectives.-Une inégalité de Lojasiewicz arithmétique.-On the continued fraction expansion of a class of numbers.-The number of solutions of a linear homogeneous congruence.-A note on Lyapunov theory for Brun algorithm.-Orbit sums and modular vector invariants.-New irrationality results for dologarithms of rational numbers.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.