Torsello / Minello / Rossi | Structural, Syntactic, and Statistical Pattern Recognition | Buch | 978-3-031-80506-6 | sack.de

Buch, Englisch, Band 15444, 200 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 330 g

Reihe: Lecture Notes in Computer Science

Torsello / Minello / Rossi

Structural, Syntactic, and Statistical Pattern Recognition

Joint IAPR International Workshops, S+SSPR 2024, Venice, Italy, September 9-10, 2024, Revised Selected Papers
Erscheinungsjahr 2025
ISBN: 978-3-031-80506-6
Verlag: Springer Nature Switzerland

Joint IAPR International Workshops, S+SSPR 2024, Venice, Italy, September 9-10, 2024, Revised Selected Papers

Buch, Englisch, Band 15444, 200 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 330 g

Reihe: Lecture Notes in Computer Science

ISBN: 978-3-031-80506-6
Verlag: Springer Nature Switzerland


This book constitutes the proceedings of the Joint IAPR International Workshops on Structural, Syntactic, and Statistical Pattern Recognition, S+SSPR 2024, which took place in Venice, Italy, during September 9-11, 2024.

The 19 full papers presented in this volume were carefully reviewed and selected from 27 submissions. The proceedings focus on pattern recognition, including classification and clustering, deep learning, structural matching and graph-theoretic methods, and multimedia analysis and understanding.

Torsello / Minello / Rossi Structural, Syntactic, and Statistical Pattern Recognition jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


.- A Differentiable Approximation of the Graph Edit Distance.
.- Learning Graph Similarity by Counting Holes in Simplicial Complexes.
.- Community-Hop: Enhancing Node Classification through Community Preference.
.- Spatio-Temporal Graph Neural Networks for Water Temperature Modeling.
.- Enhancing IoT Network Security with Graph Neural Networks for Node Anomaly Detection.
.- LSTM Networks and Graph Neural Networks for Predicting Events of Hypoglycemia.
.- Evaluation metrics in Saliency Maps applied to Graph Regression.
.- LESI-GNN: an Interpretable Graph Neural Network based on Local Structures Embedding.
.- Mixture of Variational Graph Autoencoders.
.- Multimodality Calibration in 3D Multi Input-Multi Output Network for Dementia Diagnosis with Incomplete Acquisitions.
.- Multi-modal Medical Images Classification Using Meta-learning Algorithms.
.- From semantic segmentation of natural images to medical image segmentation using ViT-based architectures.
.- Chronic Wound Segmentation and Measurement Using Semi-Supervised Hierarchical Convolutional Neural Networks.
.- ZIRACLE: Zero-shot composed Image Retrieval with Advanced Component-Level Emphasis.
.- Improving Object Detector Performance on Low-Quality Images using Histogram Matching and Model Stacking.
.- Comparing Learning Methods to Enhance Decision-Making in Simulated Curling.
.- An empirical characterization of the stability of Isolation Forest results.
.- Automated Classification of Android Games using Word Embeddings.
.- An interesting property of Random Forest distances with respect to the curse of dimensionality.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.