Tsai | Machine Learning for Knowledge Discovery with R | Buch | 978-1-032-06536-6 | sack.de

Buch, Englisch, 260 Seiten, Format (B × H): 156 mm x 234 mm, Gewicht: 544 g

Tsai

Machine Learning for Knowledge Discovery with R

Methodologies for Modeling, Inference and Prediction
1. Auflage 2021
ISBN: 978-1-032-06536-6
Verlag: CRC Press

Methodologies for Modeling, Inference and Prediction

Buch, Englisch, 260 Seiten, Format (B × H): 156 mm x 234 mm, Gewicht: 544 g

ISBN: 978-1-032-06536-6
Verlag: CRC Press


Machine Learning for Knowledge Discovery with R contains methodologies and examples for statistical modelling, inference, and prediction of data analysis. It includes many recent supervised and unsupervised machine learning methodologies such as recursive partitioning modelling, regularized regression, support vector machine, neural network, clustering, and causal-effect inference. Additionally, it emphasizes statistical thinking of data analysis, use of statistical graphs for data structure exploration, and result presentations. The book includes many real-world data examples from life-science, finance, etc. to illustrate the applications of the methods described therein.

Key Features:

- Contains statistical theory for the most recent supervised and unsupervised machine learning methodologies.

- Emphasizes broad statistical thinking, judgment, graphical methods, and collaboration with subject-matter-experts in analysis, interpretation, and presentations.

- Written by statistical data analysis practitioner for practitioners.

The book is suitable for upper-level-undergraduate or graduate-level data analysis course. It also serves as a useful desk-reference for data analysts in scientific research or industrial applications.

Tsai Machine Learning for Knowledge Discovery with R jetzt bestellen!

Zielgruppe


Academic


Autoren/Hrsg.


Weitere Infos & Material


1. Statistical Data Analysis. 2. Examining Data Distribution. 3. Regression with Shrinkage. 4. Recursive Partitioning Modeling. 5. Support Vector Machines. 6. Cluster Analysis. 7. Neural Networks. 8. Causal Inference and Matching. 9. Business and Commercial Data Modeling. 10. Analysis of Response Profiles.


Kao-Tai Tsai obtained his Ph.D. in Mathematical Statistics from University of California, San Diego and had worked at AT&T Bell Laboratories to conduct statistical research, modelling, and exploratory data analysis. After that, he joined the US FDA and later pharmaceutical companies focusing on biostatistics, clinical trial research and data analysis to address the unmet needs in human health.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.