Ulm | Numerische Lösung gewöhnlicher und partieller Differenzialgleichungen | Buch | 978-3-8169-3420-2 | www.sack.de

Buch, Deutsch, Band 707, 127 Seiten, Format (B × H): 148 mm x 210 mm, Gewicht: 210 g

Reihe: Kontakt & Studium

Ulm

Numerische Lösung gewöhnlicher und partieller Differenzialgleichungen

Finite-Elemente-Methode (FEM) – Finite-Differenzen-Methode (FDM) – Aufgaben mit Lösungen
1. Auflage 2017
ISBN: 978-3-8169-3420-2
Verlag: expert-Verlag

Finite-Elemente-Methode (FEM) – Finite-Differenzen-Methode (FDM) – Aufgaben mit Lösungen

Buch, Deutsch, Band 707, 127 Seiten, Format (B × H): 148 mm x 210 mm, Gewicht: 210 g

Reihe: Kontakt & Studium

ISBN: 978-3-8169-3420-2
Verlag: expert-Verlag


Das Buch schließt eine Lücke, indem dieses die effiziente numerische Lösung von Differenzialgleichungen von physikalischen Effekten erklärt. Der Leser wird mit den entsprechenden mathematischen Grundlagen auf die numerische Lösung von Differenzialgleichungen vorbereitet. Differenzialgleichungen werden klassifiziert und jeweils Beispiele aus der Naturwissenschaft und Technik benannt und zugeordnet. Nach einer Einführung in die Momentenmethode (MOM) zur Lösung von Differenzialgleichungen wird die klassische Form der Galerkin-Methode als Sonderfall der MOM vorgestellt. Mit ihr erfolgt die Lösung ausgewählter Anwendungsbeispiele. Es schließt sich der Übergang zur 1D-FEM nach Galerkin an. Im Fortgang wird dem Leser die Finite-Differenzen-Methode (FDM) mittels bereits mit Galerkin-Methode gelösten Anwendungsbeispielen vorgestellt. Die Lösungen beider zuletzt genannten Methoden werden gegenübergestellt.

Erforderliche mathematische Grundlagen
- Differenzialgleichungen und Finite Elemente
- Von der Momentenmethode zur Galerkin-Methode
- Lösung der Gleichung dy/dx - y = 0 mit der Galerkin-Methode
- Lösung physikalischer Bsp. DGL 1'ter und 2'ter Ordnung mit Galerkin-Methode
- Einführung in die Finite-Differenzen-Methode
- Anwendungen der FEM zur Produktentwicklung
- Anwendung der FEM zur Produktoptimierung
- MATLAB-Ergebnisse vs. COMSOL Multiphysics-Ergebnisse

Ulm Numerische Lösung gewöhnlicher und partieller Differenzialgleichungen jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


Erforderliche mathematische Grundlagen

- Differenzialgleichungen und Finite Elemente

- Von der Momentenmethode zur Galerkin-Methode
- Lösung der Gleichung dy/dx - y = 0 mit der Galerkin-Methode
- Lösung physikalischer Bsp. DGL 1'ter und 2'ter Ordnung mit Galerkin-Methode
- Einführung in die Finite-Differenzen-Methode
- Anwendungen der FEM zur Produktentwicklung
- Anwendung der FEM zur Produktoptimierung
- MATLAB-Ergebnisse vs. COMSOL Multiphysics-Ergebnisse


Als Entwicklungsingenieur bei Fa. Robert Bosch GmbH in Stuttgart war der Autor in einer Simulationsgruppe mit Simulationen mechatronischer Systeme beschäftigt. Einem Wechsel in die Forschungsabteilung folgte eine Industriepromotion in Zusammenarbeit mit der TU-Ilmenau (Prof. Dr.-Ing. habil. Eberhard Kallenbach). Die Dissertation umfasste die Simulation schnellwirkender elektromagnetischer Antriebe. 2007 kam die Berufung zum Professor an den Studiengang Elektrotechnik der Reinhold-Würth Hochschule, Campus Künzelsau. Zu den Vorlesungen der Elektrotechnik, elektrische Maschinen, Elektromagnetismus und der Theorie elektromagnetischer Felder führt er das Institut für schnelle mechatronische Systeme (ISM), in welchem mit Institutsmitarbeitern industrienahe Forschungs- und Entwicklungstätigkeiten durchgeführt werden.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.