Uryasev / Pardalos Stochastic Optimization
Erscheinungsjahr 2013
ISBN: 978-1-4757-6594-6
Verlag: Springer US
Format: PDF
Kopierschutz: 1 - PDF Watermark
Algorithms and Applications
E-Book, Englisch, 435 Seiten, Web PDF
Reihe: Applied Optimization
ISBN: 978-1-4757-6594-6
Verlag: Springer US
Format: PDF
Kopierschutz: 1 - PDF Watermark
Researchers and academies working in optimization, computer modeling, operations research and financial engineering. The book is appropriate as supplementary reading in courses on optimization and financial engineering.
Zielgruppe
Research
Autoren/Hrsg.
Weitere Infos & Material
Output analysis for approximated stochastic programs.- Combinatorial Randomized Rounding: Boosting Randomized Rounding with Combinatorial Arguments.- Statutory Regulation of Casualty Insurance Companies: An Example from Norway with Stochastic Programming Analysis.- Option pricing in a world with arbitrage.- Monte Carlo Methods for Discrete Stochastic Optimization.- Discrete Approximation in Quantile Problem of Portfolio Selection.- Optimizing electricity distribution using two-stage integer recourse models.- A Finite-Dimensional Approach to Infinite-Dimensional Constraints in Stochastic Programming Duality.- Non—Linear Risk of Linear Instruments.- Multialgorithms for Parallel Computing: A New Paradigm for Optimization.- Convergence Rate of Incremental Subgradient Algorithms.- Transient Stochastic Models for Search Patterns.- Value-at-Risk Based Portfolio Optimization.- Combinatorial Optimization, Cross-Entropy, Ants and Rare Events.- Consistency of Statistical Estimators: the Epigraphical View.- Hierarchical Sparsity in Multistage Convex Stochastic Programs.- Conditional Value-at-Risk: Optimization Approach.