Vaisband / Jakushokas / Friedman | On-Chip Power Delivery and Management | Buch |

Vaisband / Jakushokas / Friedman On-Chip Power Delivery and Management

Softcover Nachdruck of the original 4th Auflage 2016, 742 Seiten, Kartoniert, Paperback, Format (B × H): 155 mm x 235 mm, Gewicht: 11577 g
ISBN: 978-3-319-80561-0
Verlag: Springer International Publishing

Vaisband / Jakushokas / Friedman On-Chip Power Delivery and Management

This book describes methods for distributing power in high speed, high complexity integrated circuits with power levels exceeding many tens of watts and power supplies below a volt. It provides a broad and cohesive treatment of power delivery and management systems and related design problems, including both circuit network models and design techniques for on-chip decoupling capacitors, providing insight and intuition into the behavior and design of on-chip power distribution systems. Organized into subareas to provide a more intuitive flow to the reader, this fourth edition adds more than a hundred pages of new content, including inductance models for interdigitated structures, design strategies for multi-layer power grids, advanced methods for efficient power grid design and analysis, and methodologies for simultaneously placing on-chip multiple power supplies and decoupling capacitors. The emphasis of this additional material is on managing the complexity of on-chip power distribution networks.



Weitere Infos & Material

Introduction.- Inductive Properties of Electric Circuits.- Properties of On-Chip Inductive Current Loops.- Electromigration.- Scaling Trends of On-Chip Power Distribution Noise.- High Performance Power Distribution Systems.- On-Chip Power Distribution Networks.- Computer-Aided Design and Analysis.- Closed Form Expressions for Fast IR Drop Analysis.- Inductive Properties of On-Chip Power Distribution Grids.- Variation of Grid Inductance with Frequency.- Inductance/Area/Resistance Tradeoffs Inductance Model of Interdigitated Power and Ground Distribution Networks.- On-chip Power Noise Reduction Techniques in High Performance ICs.- Impedance/Noise Issues in On-Chip Power Distribution Networks.- Impedance Characteristics of Multi-Layer Grids.- Multi-Layer Interdigitated Power Distribution Networks.- Multiple On-Chip Power Supply Systems.- On-Chip Power Distribution Grids with Multiple Supply Voltages.- Background for Decoupling Capacitance.- Decoupling Capacitors for Multi-Voltage Power Distribution Systems.- Effective Radii of On-Chip Decoupling Capacitors.- Efficient Placement of Distributed On-Chip Decoupling Capacitors.- Simultaneous Co-Design of Distributed On-Chip Power Supplies and Decoupling Capacitors.- Conclusions.

Mezhiba, Andrey V.
Eby G. Friedman was born in Jersey City, New Jersey in 1957. He received the B. S. degree from Lafayette College, Easton, Pennsylvania in 1979, and the M. S. and Ph. D. degrees from the University of California, Irvine, in 1981 and 1989, respectively, all in electrical engineering.
He was with Philips Gloeilampen Fabrieken, Eindhoven, The Netherlands, in 1978 where he worked on the design of bipolar differential amplifiers. From 1979 to 1983, he was employed by Hughes Aircraft Company, Newport Beach, California, working in the areas of custom IC design, software compatible gate array design, one- and two-dimensional device modeling, circuit modeling, and double level metal process development. From 1983 to 1991, he was employed at Hughes Aircraft Company, Carlsbad, California, rising to the position of Manager of the Signal Processing Design and Test Department, responsible for the design and test of high performance VLSI/VHSIC CMOS and BIMOS digital and analog IC's, the development of supporting design and test methodologies and CAD tools, functional and parametric test, and the development of high performance and high resolution DSP and oversampled systems.

Dr. Friedman has been with the Department of Electrical and Computer Engineering at the University of Rochester, Rochester, New York, since 1991, where he is a Distinguished Professor and Director of the High Performance VLSI/IC Design and Analysis Laboratory. He previously was the Director of the Center for Electronic Imaging Systems. He is also a Visiting Professor at the Technion - Israel Institute of Technology. He also directs the Technion Advanced Circuits Research Center (ACRC). His current research and teaching interests are in high performance synchronous digital and mixed-signal microelectronic design and analysis with application to high speed portable processors and low power wireless communications.

He has authored twelve book chapters and many papers in the fields of high speed and low power CMOS design techniques, interconnect and substrate noise, pipelining and retiming, three-dimensional integration, and the theory and application of power and synchronous clock distribution networks.

Dr. Friedman has also authored or edited sixteen books, including Clock Distribution Networks in VLSI Circuits and Systems (IEEE Press, 1995), High Performance Clock Distribution Networks (Kluwer Academic Publishers, 1997), Analog Design Issues in Digital VLSI Circuits and Systems (Kluwer Academic Publishers, 1997), Timing Optimization through Clock Skew Scheduling (Kluwer Academic Publishers, 2000 and 2009), On-Chip Inductance in High Speed Integrated Circuits (Kluwer Academic Publishers, 2001), Power Distribution Networks in High Speed Integrated Circuits (Kluwer Academic Publishers, 2004), Multi-Voltage CMOS Circuit Design (John Wiley & Sons Press, 2006), Power Distribution Networks with On-Chip Decoupling Capacitors (Springer Verlag, 2008 and 2011), Three-Dimensional Integrated Circuit Design (Morgan Kaufmann, 2009), and High Performance Integrated Circuit Design (McGraw-Hill Publishers, 2012).

Dr. Friedman is a Fellow of the IEEE, Chair of the steering committee for the IEEE Transactions on Very Large Scale Integration (VLSI) Systems, a Regional Editor of the Journal of Circuits, Systems and Computers, a Member of the editorial board of the Analog Integrated Circuits and Signal Processing, Microelectronics Journal, Journal of Low Power Electronics , and Journal of VLSI Signal Processing, and a Member of the technical program committee of a number of conferences.

He has been Editor-In-Chief of the IEEE Transactions on Very Large Scale Integration (VLSI) Systems, a Distinguished Lecturer of the IEEE CAS Society, a Member of the editorial board of the Proceedings of the IEEE and IEEE Transactions on Circuits and Systems II: Analog and Digital Sign

Ihre Fragen, Wünsche oder Anmerkungen

Ihre E-Mail-Adresse*
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.