Buch, Englisch, 203 Seiten, Format (B × H): 170 mm x 240 mm, Gewicht: 544 g
ISBN: 978-3-527-40484-1
Verlag: WILEY-VCH
Written for researchers in the field with different professional backgrounds, this volume classifies phenomena not by system but rather by the type of competing interactions involved. This allows for a straightforward presentation of the underlying principles and the universal laws governing the behaviour of different systems.
Starting with a historical overview, the author proceeds by describing self-competitions of various types of interactions (such as diploar or multipolar interactions), competitions between a short-range and a long-range interaction (as in Ising systems or DNA models) or between a long-range interaction and an anisotropy (as in ultrathin magnetic films or magnetic nanoparticles) and finally competitions between interactions of the same range (as in spin glasses).
Each chapter contains a few problems with solutions which provide suitable material for lecturers of mathematics and physics as well as biology courses.
A vast body of references to the original literature make the volume self-contained and ideally suited to master this interdisciplinary field.
Autoren/Hrsg.
Fachgebiete
Weitere Infos & Material
1. Introduction
1.1 How the story begun
1.2 First theoretical approaches for competing interactions
1.3 Beautiful patterns govern the world
2. Self-competition or how to choose the best from the worse
2.1 Frustration: the world is not perfect
2.2 Self-competition of the short-range interactions
2.3 Self-competition of the long-range interactions
2.4 Ordering entropy
2.5 Problems/Solutions
3. Famous competition between a short- and a long-range interaction
3.1 Localized particles
3.2 Delocalized particles
3.3 Problems/Solutions
4. Competition between a long-range dipolar interaction and an anisotropy
4.1 Ultrathin magnetic films
4.2 Ultrthin magnetic particles
5. Competition between two interactions of the same range
5.1 Two short-range interactions
5.2 Two long-range interactions
5.3 Problems/Solutions
6. Dynamics of self-organized systems close to equilibrium
6.1 Polarization reversal
6.2 Wave phenomena
6.3 Diffusion-limited aggregation
6.4 Dynamics of nanoparticles
References