Buch, Englisch, Band 50, 328 Seiten, Format (B × H): 162 mm x 242 mm, Gewicht: 1450 g
Reihe: Texts in Applied Mathematics
Boundary Layers and Multiple Timescale Dynamics
Buch, Englisch, Band 50, 328 Seiten, Format (B × H): 162 mm x 242 mm, Gewicht: 1450 g
Reihe: Texts in Applied Mathematics
ISBN: 978-0-387-22966-9
Verlag: Springer
Perturbation theory, one of the most intriguing and essential topics in mathematics, and its applications to the natural and engineering sciences is the main focus of this workbook. In a systematic introductory manner, this unique book deliniates boundary layer theory for ordinary and partial differential equations, multi-timescale phenomena for nonlinear oscillations, diffusion and nonlinear wave equations. The book provides analysis of simple examples in the context of the general theory, as well as a final discussion of the more advanced problems. Precise estimates and excursions into the theoretical background makes this workbook valuable to both the applied sciences and mathematics fields. As a bonus in its last chapter the book includes a collection of rare and useful pieces of literature, such as the summary of the Perturbation theory of Matrices.
Detailed illustrations, stimulating examples and exercises as well as a clear explanation of the underlying theory makes this workbook ideal for senior undergraduate and beginning graduate students in applied mathematics as well as science and engineering fields.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik Mathematik Mathematische Analysis Differentialrechnungen und -gleichungen
- Naturwissenschaften Physik Physik Allgemein Theoretische Physik, Mathematische Physik, Computerphysik
- Naturwissenschaften Physik Angewandte Physik Statistische Physik, Dynamische Systeme
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Angewandte Mathematik, Mathematische Modelle
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Numerische Mathematik
Weitere Infos & Material
Basic Material.- Approximation of Integrals.- Boundary Layer Behaviour.- Two-Point Boundary Value Problems.- Nonlinear Boundary Value Problems.- Elliptic Boundary Value Problems.- Boundary Layers in Time.- Evolution Equations with Boundary Layers.- The Continuation Method.- Averaging and Timescales.- Advanced Averaging.- Averaging for Evolution Equations.- Wave Equations on Unbounded Domains.