Vernon | Computer Vision - ECCV 2000 | Buch | 978-3-540-67686-7 | sack.de

Buch, Englisch, Band 1843, 882 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 1505 g

Reihe: Lecture Notes in Computer Science

Vernon

Computer Vision - ECCV 2000

6th European Conference on Computer Vision Dublin, Ireland, June 26 - July 1, 2000, Proceedings, Part II
2000
ISBN: 978-3-540-67686-7
Verlag: Springer Berlin Heidelberg

6th European Conference on Computer Vision Dublin, Ireland, June 26 - July 1, 2000, Proceedings, Part II

Buch, Englisch, Band 1843, 882 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 1505 g

Reihe: Lecture Notes in Computer Science

ISBN: 978-3-540-67686-7
Verlag: Springer Berlin Heidelberg


The two-volume set LNCS 1842/1843 constitutes the refereed proceedings of the 6th European Conference on Computer Vision, ECCV 2000, held in Dublin, Ireland in June/July 2000. The 116 revised full papers presented were carefully selected from a total of 266 submissions. The two volumes offer topical sections on recognitions and modelling; stereoscopic vision; texture and shading; shape; structure from motion; image features; active, real-time, and robot vision; segmentation and grouping; vision systems engineering and evaluation; calibration; medical image understanding; and visual motion.

Vernon Computer Vision - ECCV 2000 jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


Recognition & Modelling I.- Partitioned Sampling, Articulated Objects, and Interface-Quality Hand Tracking.- Real-Time Tracking of Multiple Articulated Structures in Multiple Views.- Pedestrian Detection from a Moving Vehicle.- Vision-Based Guidance and Control of Robots in Projective Space.- Stereoscopic Vision.- A General Method for Unsupervised Segmentation of Images Using a Multiscale Approach.- Image Segmentation by Nonparametric Clustering Based on the Kolmogorov-Smirnov Distance.- Euclidean Group Invariant Computation of Stochastic Completion Fields Using Shiftable-Twistable Functions.- Recognition & Modelling / Stereoscopic Vision / Texture, Shading, & Colour.- Bootstrap Initialization of Nonparametric Texture Models for Tracking.- Quasi-Random Sampling for Condensation.- Tracking Discontinuous Motion Using Bayesian Inference.- Direction Control for an Active Docking Behaviour Based on the Rotational Component of Log-Polar Optic Flow.- The Construction of 3 Dimensional Models Using an Active Computer Vision System.- Significantly Different Textures: A Computational Model of Pre-attentive Texture Segmentation.- Calibrating Parameters of Cost Functionals.- Coupled Geodesic Active Regions for Image Segmentation: A Level Set Approach.- Level Lines as Global Minimizers of Energy Functionals in Image Segmentation.- A Probabilistic Interpretation of the Saliency Network.- Layer Extraction with a Bayesian Model of Shapes.- Model-Based Initialisation for Segmentation.- Statistical Foreground Modelling for Object Localisation.- Nautical Scene Segmentation Using Variable Size Image Windows and Feature Space Reclustering.- A Probabilistic Background Model for Tracking.- On the Performance Characterisation of Image Segmentation Algorithms: A Case Study.- Statistical Significance as an Aid to System Performance Evaluation.- New Algorithms for Controlling Active Contours Shape and Topology.- Motion Segmentation by Tracking Edge Information over Multiple Frames.- Data-Driven Extraction of Curved Intersection Lanemarks from Road Traffic Image Sequences.- Tracking and Characterization of Highly Deformable Cloud Structures.- Calibration.- A Unifying Theory for Central Panoramic Systems and Practical Implications.- Binocular Self-Alignment and Calibration from Planar Scenes.- The Rôle of Self-Calibration in Euclidean Reconstruction from Two Rotating and Zooming Cameras.- Hand-Eye Calibration from Image Derivatives.- Medical Image Understanding.- Multimodal Elastic Matching of Brain Images.- A Physically-Based Statistical Deformable Model for Brain Image Analysis.- Minimal Paths in 3D Images and Application to Virtual Endoscopy.- Calibration / Medical Image Understanding / Visual Motion.- Kruppa Equation Revisited: Its Renormalization and Degeneracy.- Registration with a Moving Zoom Lens Camera for Augmented Reality Applications.- Calibration of a Moving Camera Using a Planar Pattern: Optimal Computation, Reliability Evaluation, and Stabilization by Model Selection.- Multi-view Constraints between Collineations: Application to Self-Calibration from Unknown Planar Structures.- Stereo Autocalibration from One Plane.- Can We Calibrate a Camera Using an Image of a Flat,Textureless Lambertian Surface?.- Underwater Camera Calibration.- On Weighting and Choosing Constraints for Optimally Reconstructing the Geometry of Image Triplets.- Computation of the Mid-Sagittal Plane in 3D Images of the Brain.- Stochastic Tracking of 3D Human Figures Using 2D Image Motion.- Monocular Perception of Biological Motion - Clutter and Partial Occlusion.- 3-D Motion and Structure from 2-D Motion Causally Integrated over Time: Implementation.- Non-parametric Model for Background Subtraction.- Qualitative Spatiotemporal Analysis Using an Oriented Energy Representation.- Regularised Range Flow.- Visual Encoding of Tilt from Optic Flow: Psychophysics and Computational Modelling.- Visual Motion.- IMPSAC: Synthesis of Importance Sampling and Random Sample Consensus.- Egomotion Estimation Using Quadruples of Collinear Image Points.- Geometric Driven Optical Flow Estimation and Segmentation for 3D Reconstruction.- Camera Pose Estimation and Reconstruction from Image Profiles under Circular Motion.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.