Buch, Englisch, Band 2023, 200 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 353 g
Reihe: Lecture Notes in Mathematics
A Mathematical Introduction
Buch, Englisch, Band 2023, 200 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 353 g
Reihe: Lecture Notes in Mathematics
ISBN: 978-3-642-21334-2
Verlag: Springer
This volume gives an introduction to linear finite dimensional damped systems as they are viewed by an applied mathematician. After a short overview of the physical principles leading to the linear system model, a largely self-contained mathematical theory for this model is presented. This includes the geometry of the underlying indefinite metric space, spectral theory of J-symmetric matrices and the associated quadratic eigenvalue problem. Particular attention is paid to the sensitivity issues which influence numerical computations. Finally, several recent research developments are included, e.g. Lyapunov stability and the perturbation of the time evolution.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik Mathematik Geometrie Geometrie der modernen Physik
- Naturwissenschaften Physik Quantenphysik
- Naturwissenschaften Physik Mechanik Akustik, Schwingungsanalyse
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Angewandte Mathematik, Mathematische Modelle
- Naturwissenschaften Physik Physik Allgemein Theoretische Physik, Mathematische Physik, Computerphysik
Weitere Infos & Material
1 The model.- 2 Simultaneous diagonalisation (Modal damping).- 3 Phase space.- 4 The singular mass case.- 5 "Indefinite metric".- 6 Matrices and indefinite scalar products.- 7 Oblique projections.- 8 J-orthogonal projections.- 9 Spectral properties and reduction of J-Hermitian matrices.- 10 Definite spectra.- 11 General Hermitian matrix pairs.- 12 Spectral decomposition of a general J-Hermitian matrix.- 13 The matrix exponential.- 14 The quadratic eigenvalue problem.- 15 Simple eigenvalue inclusions.- 16 Spectral shift.- 17 Resonances and resolvents.- 18 Well-posedness.- 19 Modal approximation.- 20 Modal approximation and overdampedness.- 21 Passive control.- 22 Perturbing matrix exponential.- 23 Notes and remarks.