Vinter Optimal Control
2010
ISBN: 978-0-8176-8086-2
Verlag: Birkhäuser Boston
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, 500 Seiten, eBook
Reihe: Modern Birkhäuser Classics
ISBN: 978-0-8176-8086-2
Verlag: Birkhäuser Boston
Format: PDF
Kopierschutz: 1 - PDF Watermark
'Each chapter contains a well-written introduction and notes. They include the author's deep insights on the subject matter and provide historical comments and guidance to related literature. This book may well become an important milestone in the literature of optimal control.' -Mathematical Reviews 'Thanks to a great effort to be self-contained, [this book] renders accessibly the subject to a wide audience. Therefore, it is recommended to all researchers and professionals interested in Optimal Control and its engineering and economic applications. It can serve as an excellent textbook for graduate courses in Optimal Control (with special emphasis on Nonsmooth Analysis).' -Automatica
Richard Vinter is Head of the Control and Power Research Group at Imperial College London.
Zielgruppe
Graduate
Autoren/Hrsg.
Weitere Infos & Material
1;Contents;10
2;Preface;14
3;Notation;20
4;Overview;22
5;Measurable Multifunctions and Differential Inclusions;82
6;Variational Principles;130
7;Nonsmooth Analysis;148
8;Subdifferential Calculus;199
9;The Maximum Principle;220
10;The Extended Euler-Lagrange and Hamilton Conditions;251
11;Necessary Conditions for Free End-Time Problems;303
12;The Maximum Principle for State Constrained Problems;338
13;Necessary Conditions for Differential Inclusion Problems with State Constraints;378
14;Regularity of Minimizers;414
15;Dynamic Programming;452
16;References;509
17;Index;521
Overview.- Measurable Multifunctions and Differential Inclusions.- Variational Principles.- Nonsmooth Analysis.- Subdifferential Calculus.- The Maximum Principle.- The Extended Euler–Lagrange and Hamilton Conditions.- Necessary Conditions for Free End-Time Problems.- The Maximum Principle for State Constrained Problems.- Necessary Conditions for Differential Inclusion Problems with State Constraints.- Regularity of Minimizers.- Dynamic Programming.