Buch, Englisch, 500 Seiten, Format (B × H): 234 mm x 156 mm, Gewicht: 1620 g
Reihe: Modern Birkhäuser Classics
Buch, Englisch, 500 Seiten, Format (B × H): 234 mm x 156 mm, Gewicht: 1620 g
Reihe: Modern Birkhäuser Classics
ISBN: 978-0-8176-4990-6
Verlag: Birkhauser Boston
"Each chapter contains a well-written introduction and notes. They include the author's deep insights on the subject matter and provide historical comments and guidance to related literature. This book may well become an important milestone in the literature of optimal control." —Mathematical Reviews "Thanks to a great effort to be self-contained, [this book] renders accessibly the subject to a wide audience. Therefore, it is recommended to all researchers and professionals interested in Optimal Control and its engineering and economic applications. It can serve as an excellent textbook for graduate courses in Optimal Control (with special emphasis on Nonsmooth Analysis)." —Automatica "The book may be an essential resource for potential readers, experts in control and optimization, as well as postgraduates and applied mathematicians, and it will be valued for its accessibility and clear exposition." —Applications of Mathematics
Zielgruppe
Graduate
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Angewandte Mathematik, Mathematische Modelle
- Mathematik | Informatik Mathematik Mathematik Interdisziplinär Systemtheorie
- Interdisziplinäres Wissenschaften Wissenschaften: Forschung und Information Kybernetik, Systemtheorie, Komplexe Systeme
- Technische Wissenschaften Elektronik | Nachrichtentechnik Nachrichten- und Kommunikationstechnik Regelungstechnik
- Technische Wissenschaften Technik Allgemein Mathematik für Ingenieure
Weitere Infos & Material
Overview.- Measurable Multifunctions and Differential Inclusions.- Variational Principles.- Nonsmooth Analysis.- Subdifferential Calculus.- The Maximum Principle.- The Extended Euler–Lagrange and Hamilton Conditions.- Necessary Conditions for Free End-Time Problems.- The Maximum Principle for State Constrained Problems.- Necessary Conditions for Differential Inclusion Problems with State Constraints.- Regularity of Minimizers.- Dynamic Programming.