E-Book, Englisch, Band Volume 35, 447 Seiten, Web PDF
Reihe: Studies in Applied Mechanics
Voyiadjis / Bank / Jacobs Mechanics of Materials and Structures
1. Auflage 2013
ISBN: 978-1-4832-9154-3
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, Band Volume 35, 447 Seiten, Web PDF
Reihe: Studies in Applied Mechanics
ISBN: 978-1-4832-9154-3
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark
A wide range of topics in the area of mechanics of materials and structures are covered in this volume, ranging from analysis to design. There is no special emphasis on a specific area of research. The first section of the book deals with topics on the mechanics and damage of concrete. It also includes two papers on granular packing structure changes and cumulative damage in polymers. In the second part more theoretical topics in mechanics are discussed, such as shell theory and nonlinear elasticity. The following section dicusses areas dealing primarily with plasticity, viscoelasticity, and viscoplasticity. These include such topics as dynamic and cyclic plasticity. In the final section the subject is structural dynamics, including seismic analysis, composite frames and nonlinear analysis of bridges. The volume is compiled in honor of Professor Maciej P. Bieniek who has served as a teacher and researcher at several universities, and who has made many significant contributions in the evaluation, rehabilitation, and design of infrastructures.
Autoren/Hrsg.
Weitere Infos & Material
1;Front Cover;1
2;Mechanics of Materials and Structures;4
3;Copyright Page;5
4;Table of Contents;10
5;Foreword;8
6;MACIEJ P. BIENIEK - A BIOGRAPHICAL SKETCH;12
7;Doctoral Students;14
8;Publications;15
9;Session 1: Mechanics of Materials and Structures I;20
9.1;Chapter 1. A Rate-Dependent Three Invariant Softening Model for Concrete;22
9.1.1;1. INTRODUCTION AND OBJECTIVES;22
9.1.2;2. BACKGROUND;23
9.1.3;3. A DESCRIPTION OF THE PROPOSED SOFTENING MODEL;28
9.1.4;4. MODEL FITTING;35
9.1.5;5. EXAMPLE PROBLEMS;35
9.1.6;6. CONCLUSIONS;43
9.1.7;7. REFERENCES;45
9.2;Chapter 2. DAMAGE MECHANICS OF CONCRETE UNDER CYCLIC LOAD ;50
9.2.1;Abstract;50
9.2.2;1. Introduction;50
9.2.3;2. Concrete Behavior Under Load;52
9.2.4;3. Damage Mechanics Theories;55
9.2.5;4. Desirable Characteristics of a Damage Model;58
9.2.6;5. Conclusions;60
9.2.7;6. References;60
9.3;Chapter 3. An Anisotropic Damage-Plastic Model for Concrete ;66
9.3.1;Abstract;66
9.3.2;1. INTRODUCTION;66
9.3.3;2. GENERAL RELATIONS;67
9.3.4;4. Plastic-Damage Model;75
9.3.5;5. Numerical Examples;78
9.3.6;6. Conclusions;81
9.3.7;References;82
9.4;Chapter 4. Laser ultrasonics of concrete
;84
9.4.1;Abstract;84
9.4.2;1. INTRODUCTION;84
9.4.3;2. LASER GENERATION AND DETECTION OF ULTRASOUND;86
9.4.4;3. EXPERIMENTAL PROCEDURE;87
9.4.5;4. EXPERIMENTAL RESULTS AND DISCUSSION;90
9.4.6;5. CONCLUSION;93
9.4.7;6. REFERENCES;95
9.5;Chapter 5. Investigating cumulative damage in a highly filled polymeric composite material ;98
9.5.1;Abstract;98
9.5.2;1. INTRODUCTION;98
9.5.3;2. EXPERIMENT;99
9.5.4;3. RESULTS AND DISCUSSION;100
9.5.5;4. CONCLUSIONS;109
9.5.6;5. ACKNOWLEDGMENTS;110
9.5.7;6. REFERENCES;111
9.6;Chapter 6. An experimental study of granular packing structure changes under load ;112
9.6.1;ABSTRACT;112
9.6.2;1. INTRODUCTION;112
9.6.3;2. EXPERIMENT;113
9.6.4;3. IMAGE PROCESSING;116
9.6.5;4. PACKING STRUCTURES;118
9.6.6;5. PACKING STRUCTURE CHANGES;127
9.6.7;6. CONCLUSION;128
9.6.8;7. ACKNOWLEDGMENT;130
9.6.9;8. REFERENCES;130
10;Session 2: Mechanics of Materials and Structures II ;132
10.1;Chapter 7. Finite Elements via the Hu-Washizu Theorem - Convergence and Error ;134
10.1.1;1. INTRODUCTION;134
10.1.2;2. HU-WASHIZU BASED FINITE ELEMENTS;135
10.1.3;3. CONVERGENCE CRITERIA;141
10.1.4;4. CONVERGENCE OF THE TIMOSHENKO BEAM ELEMENT;144
10.1.5;5. CONCLUSIONS;151
10.1.6;6, REFERENCES;151
10.2;Chapter 8. Dynamic Inelastic Shell Analysis ;154
10.2.1;1. INTRODUCTION;154
10.2.2;2. EXTERNAL SURFACE INTERACTION;154
10.2.3;3. SPHERICAL SHELLS;157
10.2.4;4. CONCENTRIC CYLINDERS;164
10.2.5;5. REFERENCES;169
10.3;Chapter 9. Nonlinear Analysis Using Perturbation Methods and Classical Elasticity ;170
10.3.1;Abstract;170
10.3.2;1. INTRODUCTION;170
10.3.3;2. THREE-DIMENSIONAL ELASTIC SOLIDS;172
10.3.4;3. SPHERICAL SHELLS;175
10.3.5;4. CONCLUDING REMARKS;180
10.3.6;5. REFERENCES;180
10.3.7;6. APPENDIX;181
10.4;Chapter 10. DECOHESION AT A CIRCULAR INTERFACE;184
10.4.1;Abstract;184
10.4.2;1. INTRODUCTION;184
10.4.3;2. GOVERNING EQUATIONS FOR THE INTERFACE;186
10.4.4;3. THE AXISYMMETRIC PROBLEM;189
10.4.5;4. CONCLUDING REMARKS;201
10.4.6;5. REFERENCES;201
10.4.7;6. APPENDIX;202
10.5;Chapter 11. CONSTITUTIVE RELATIONS OF NONLINEAR ELASTIC CONTINUA ;204
10.5.1;ABSTRACT;204
10.5.2;1. INTRODUCTION;204
10.5.3;2. BASIC DEFINITIONS AND RELATIONS;205
10.5.4;3. THE STRAIN ENERGY FUNCTION;207
10.5.5;CONCLUSION;226
10.5.6;REFERENCES;226
11;Session 3: Mechanics of Materials and Structures III ;230
11.1;Chapter 12. Non-Uniqueness in Dynamic Rate-Independent Non-Associated Plasticity ;232
11.1.1;Abstract;232
11.1.2;1. INTRODUCTION;232
11.1.3;2. RATE-INDEPENDENT NON-ASSOCIATED PLASTICITY;233
11.1.4;3. D.RIVATI.. OF THE TANGENT STIFFNESS TENSOR;235
11.1.5;4. WORK DONE IN AN INFINITESIMAL LOAD-UNLOAD CYCLE;236
11.1.6;5. ELASTIC-PLASTIC WAVE PROPAGATION;238
11.1.7;6. FAST PLASTIC WAVES AND NON-UNIQUENESS;244
11.1.8;7. CONCLUSION;249
11.1.9;8. REFERENCES;250
11.1.10;APPENDIX;250
11.2;Chapter 13. A statical interpretation of the stress work-conjugate to Lagrangianbased Almansi strain ;252
11.2.1;Abstract;252
11.2.2;1. INTRODUCTION: BASIC BACKGROUND AND OBJECTIVE;252
11.2.3;2. THE RECIPROCAL ELEMENT;256
11.2.4;3. FORCE RESOLUTION ON THE RECIPROCAL ELEMENT;259
11.2.5;4. CLOSING REMARKS;262
11.2.6;REFERENCES;263
11.3;Chapter 14.
CYCLIC PLASTICITY AND RATCHETTING;264
11.3.1;1. INTRODUCTION;264
11.3.2;2. THEORETICAL PRELIMINARIES;267
11.3.3;3. PROPOSED MODEL FOR CYCLIC PLASTICITY WITH RATCHETTING;270
11.3.4;4. NUMERICAL IMPLEMENTATION OF THE MODEL;284
11.3.5;5. CONCLUSIONS AND SUMMARY;301
11.3.6;6. REFERENCES;302
11.4;Chapter 15. A SIMPLE NON-ISOTHERMAL CONSTITUTIVE MODEL FOR FINITE DEFORMATION RUBBER VISCOELASTICITY1 ;308
11.4.1;Abstract;308
11.4.2;1. INTRODUCTION;308
11.4.3;2. NOTATION AND PRELIMINARIES;313
11.4.4;3. PREVIOUS THEORY AND EXTENSION TO COMPRESSIBLE MATERIAL BEHAVIOR;316
11.4.5;4. A SIMPLE NON-ISOTHERMAL MODEL FOR RUBBER VISCOELASCTICITY;320
11.4.6;5. ENERGIES FOR THERMOVISCOELASTIC MATERIALS OF SINGLE - TYPE;322
11.4.7;6. SUMMARY;327
11.4.8;REFERENCES;327
11.5;Chapter 16. Finite Strain Thermo-Viscoplasticity ;330
11.5.1;Abstract;330
11.5.2;1. INTRODUCTION;330
11.5.3;2. CONTINUUM MECHANICS PRELIMINARIES;332
11.5.4;3. THERMOMECHANICAL EQUATIONS;334
11.5.5;4. FINITE ELEMENT FORMULATION;339
11.5.6;5. APPLICATIONS;343
11.5.7;6. CONCLUSION;345
11.5.8;7. ACKNOWLEDGEMENT;346
11.5.9;8. REFERENCES;346
12;Session 4: Mechanics of Materials and Structures IV ;350
12.1;Chapter 17. Dynamic experimental data based models for analysis and design of precast concrete tilt-up-walls ;352
12.1.1;1. INTRODUCTION;352
12.1.2;2. EXPERIMENTAL MODEL AND DYNAMIC INPUT MOTIONS;353
12.1.3;3. TEST FACILITY AND MOTION SENSOR SELECTION;354
12.1.4;4. TEST RESULTS;354
12.1.5;5. DISCUSSION AND RESULTS;355
12.1.6;6. CONCLUSIONS;356
12.1.7;7. ACKNOWLEDGMENTS;357
12.1.8;8. REFERENCES;357
12.2;Chapter 18. An alternative formulation of the Substructure Deletion Method for the seismic analysis of embedded foundations ;370
12.2.1;Abstract;370
12.2.2;1. INTRODUCTION;370
12.2.3;2. DETERMINATION OF THE IMPEDANCE MATRIX;372
12.2.4;3. INTEGRATION PROCEDURE;375
12.2.5;4. IMPEDANCE MATRIX FOR EMBEDDED SQUARE FOUNDATIONS;376
12.2.6;5. CONCLUSION;379
12.2.7;6. REFERENCES;380
12.3;Chapter 19. A Hybrid Force Method/Stiffness Matrix Method for the Analysis of Thin-Walled Composite Frames ;390
12.3.1;Abstract;390
12.3.2;INTRODUCTION;391
12.3.3;BACKGROUND;392
12.3.4;THE ELEMENT STIFFNESS MATRIX FORMULATION;394
12.3.5;NUMERICAL EXAMPLES;399
12.3.6;NUMERICAL RESULTS AND DISCUSSION;401
12.3.7;CONCLUSION;403
12.3.8;Acknowledgement;403
12.3.9;References;403
12.3.10;APPENDIX;407
12.4;Chapter 20. Star 37S solid rocket motor nozzle thermostructural analysis ;416
12.4.1;Abstract;416
12.4.2;1. INTRODUCTION;416
12.4.3;2. MATERIAL PROPERTIES AND ORIENTATIONS;418
12.4.4;3. FAILURE CRITERIA;420
12.4.5;4. THERMOSTRUCTURAL MODEL;420
12.4.6;5. THERMOSTRUCTURAL ANALYSIS RESULTS;421
12.4.7;6. CONCLUSIONS;432
12.4.8;REFERENCES;432
12.5;Chapter 21. A COMPUTER MODEL FOR NONLINEAR ANALYSIS OF BRIDGE STRUCTURES;434
12.5.1;Introduction;435
12.5.2;The current practice;435
12.5.3;The next step: "Nonlinear Pushover Analysis";438
12.5.4;Nonlinear Modeling;439
12.5.5;Conclusions;443
12.5.6;References;443
13;Author Index;444