E-Book, Englisch, 193 Seiten
Reihe: Physics and Astronomy (R0)
Wade Earth Observations and Geospatial Science in Service of Sustainable Development Goals
1. Auflage 2019
ISBN: 978-3-030-16016-6
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
12th International Conference of the African Association of Remote Sensing and the Environment
E-Book, Englisch, 193 Seiten
Reihe: Physics and Astronomy (R0)
ISBN: 978-3-030-16016-6
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
Autoren/Hrsg.
Weitere Infos & Material
1;Foreword;6
2;Message from AARSE President;8
3;Conference Committees;10
4;Contents;14
5;About the Editor;17
6;Part I: Space and Geospatial Science for Sustainable Development Goals;20
6.1;Earth Observation for Water Resource Management and Sustainable Development;21
6.1.1;1 Introduction;21
6.1.2;2 The Sentinel Satellites: A New Era in Earth Observation for Sustainable Development Monitoring;22
6.1.3;3 Monitoring and Assessment of Wetlands and Open Water Bodies;23
6.1.4;4 Agricultural Mapping and Monitoring;25
6.1.5;5 Challenges;29
6.1.6;6 Conclusions;30
6.1.7;References;31
6.2;River Long Profiles of Selected Third-Order Basins in Basement Complexes;32
6.2.1;1 Introduction;32
6.2.2;2 Study Area;33
6.2.3;3 Methodology;35
6.2.4;4 Results;35
6.2.4.1;4.1 River Long-Profiles of the Third-Order Basins;36
6.2.4.2;4.2 Hypsometry of the Third-Order Basins;36
6.2.5;5 Discussion;36
6.2.5.1;5.1 River Profiles and Basin Dissection: Implications on Process-Form Dynamics;36
6.2.6;6 Conclusion;40
6.2.7;References;41
6.3;A Remote Sensing Based Approach for Optimizing the Sampling Strategies in Crop Monitoring and Crop Yield Estimation Studies;42
6.3.1;1 Introduction;42
6.3.2;2 Study Area;43
6.3.3;3 Materials and Methods;43
6.3.3.1;3.1 Materials;43
6.3.3.1.1;3.1.1 Geospatial Data and Derived Proxies of Landscape Biodiversity;43
6.3.3.1.2;3.1.2 Field Surveys on Trees;45
6.3.3.2;3.2 Methods;45
6.3.3.2.1;3.2.1 Landscape Segmentation;45
6.3.3.2.2;3.2.2 Variables Computation;45
6.3.3.2.3;3.2.3 Unsupervised Classification of Landscape Units;46
6.3.3.2.4;3.2.4 Assessment of the Landscape Units Classification;46
6.3.4;4 Results and Discussion;46
6.3.4.1;4.1 Landscape Segmentation and Classification;46
6.3.4.2;4.2 Assessment of the Landscape Units Classification;47
6.3.4.3;4.3 Tree Species Inventory and Gradient Validation;48
6.3.5;5 Conclusion;51
6.3.6;References;52
7;Part II: Remote Sensing and GIS for Natural Resources Management;54
7.1;GIS Based Analysis of the Extent and Dynamic of Forest Cover Changes Between 1990-2017 Using Geospatial Techniques: In Case of...;55
7.1.1;1 Introduction;55
7.1.1.1;1.1 Description of the Study Area;56
7.1.2;2 Research Methodology;56
7.1.3;3 Result and Discussion;57
7.1.3.1;3.1 Land Use Land Cover Classification Scheme;57
7.1.3.2;3.2 Distribution of Land Use Land Cover in 1990, 2002 and 2017;57
7.1.4;4 Conclusion;63
7.1.5;References;63
7.2;Conflict and Agricultural Production: Using Earth Observation to Assess Productivity and Support Rehabilitation in Syria;65
7.2.1;1 Introduction;65
7.2.2;2 Methodology;66
7.2.3;3 Results;68
7.2.4;4 Conclusions;71
7.3;Morphometric Analyses of Tarhuna Drainage Basins to Accesses Groundwater Potential Using GIS Techniques;73
7.3.1;1 Introduction;73
7.3.2;2 Study Area;74
7.3.3;3 Soil Type and Geologic Formations of the Area;74
7.3.4;4 Materials and Method;74
7.3.5;5 Results and Discussion;74
7.3.5.1;5.1 Linear Morphometric Parameters;74
7.3.5.1.1;5.1.1 Stream Order (S?) and Stream Number (Nu);75
7.3.5.1.2;5.1.2 Stream Length (Lu);75
7.3.5.1.3;5.1.3 Mean Stream Length (Lu);76
7.3.5.1.3.1;Stream Length Ratio (RL);76
7.3.5.1.4;5.1.4 Length of Overland Flow (Lg);76
7.3.5.1.4.1;Bifurcation Ratio (Rb);76
7.3.5.2;5.2 Areal Morphometric Parameters: It Includes Some Elements as the Following;76
7.3.5.2.1;5.2.1 Basin Area (P);76
7.3.5.2.2;5.2.2 Drainage Density (Dd);76
7.3.5.2.3;5.2.3 Drainage Frequency (Fs);76
7.3.5.2.4;5.2.4 Drainage Intensity (Di);77
7.3.5.2.5;5.2.5 Drainage Texture (Dt);77
7.3.5.3;5.3 Relief Morphometric Parameters;77
7.3.5.3.1;5.3.1 Basin Relief (H) and Relief Ratio (Rh);77
7.3.5.3.2;5.3.2 Dissection Index (DI);78
7.3.5.3.3;5.3.3 Basin Slope (Sb);78
7.3.6;6 Total Rainfall Volume on the Catchments at the Study Area;78
7.3.6.1;6.1 Lag-Time and Time of Concentration;79
7.3.7;7 Identification of Groundwater Potential Zones;79
7.3.8;8 Conclusion;82
7.3.9;References;82
7.4;Change Detection in the Horticultural Region of Cape Town Using Landsat Imagery;84
7.4.1;1 Introduction;84
7.4.2;2 Main Body;86
7.4.2.1;2.1 Literature Review;86
7.4.2.2;2.2 Study Area and Datasets;87
7.4.3;3 Methodology;87
7.4.4;4 Results and Discussion;88
7.4.4.1;4.1 NDVI Index;88
7.4.4.2;4.2 Supervised Classification;88
7.4.5;5 Conclusions and Recommendations;89
7.4.6;References;90
8;Part III: Remote Sensing of the Ocean and Coastal Zone Management;92
8.1;Assessment of Lake Victoria´s Trophic Status Using Satellite-Derived Secchi Disk Depth;93
8.1.1;1 Introduction;93
8.1.2;2 Materials and Methods;94
8.1.2.1;2.1 Description of Study Area;94
8.1.2.2;2.2 Data and Methodology;94
8.1.3;3 Results and Discussions;97
8.1.4;4 Conclusions and Recommendations;100
8.1.5;References;101
9;Part IV: Applications of Advanced Remote Sensing Technologies (LIDAR, Hyperspectral) in Africa;102
9.1;Application of Unmanned Aerial Vehicle (UAV) for Small Scale Precision Farming in Botswana;103
9.1.1;1 Introduction;103
9.1.1.1;1.1 The General and Specific Objectives;104
9.1.1.2;1.2 General Background;104
9.1.2;2 Methodology;105
9.1.3;3 Description of the Study Area;107
9.1.4;4 Results and Discussion;108
9.1.5;5 Conclusion;111
9.1.6;References;111
10;Part V: Climate Changes Implications on Sustainable Development in Africa;113
10.1;Spatiotemporal Analysis of Sitatunga (Tragelaphus Spekei) Population´s Response to Flood Variability in Northern Botswana Wetl...;114
10.1.1;1 Introduction;114
10.1.2;2 Materials and Methods;116
10.1.2.1;2.1 Description of the Study Area;116
10.1.2.2;2.2 Data Collection and Analysis;116
10.1.3;3 Results and Discussions;118
10.1.3.1;3.1 Sitatunga Population Trends in Relation to Changes in Inundation Levels;118
10.1.3.2;3.2 Sitatunga Habitat Range Under Present Climate;121
10.1.3.3;3.3 Policy Implications for Sustainable Management of Sitatunga;124
10.1.4;4 Conclusion;124
10.1.5;References;125
10.2;Assessment of the Impact of Deforestation on Forest Carbon Storage. A Case Study of Mabira Forest, Uganda;127
10.2.1;1 Introduction;127
10.2.2;2 Main Body;128
10.2.2.1;2.1 Description of Study Area;128
10.2.2.2;2.2 Data;129
10.2.2.3;2.3 Methodology;129
10.2.3;3 Results and Discussion;131
10.2.3.1;3.1 Validation of Results;134
10.2.4;4 Conclusions and Recommendations;136
10.2.5;References;136
11;Part VI: Space Technologies and Geospatial Sciences for Early Warning Systems;138
11.1;Analysis of the 2012 Flooding Events Downstream of Shiroro Reservoir, A Case of Gurmana Niger State, Nigeria;139
11.1.1;1 Introduction;139
11.1.2;2 Research Method and Design;140
11.1.2.1;2.1 Data and Software Used;140
11.1.2.2;2.2 Equipment´s Used;140
11.1.3;3 Methodology;141
11.1.4;4 Results and Discussion;142
11.1.4.1;4.1 Image Analysis and Classification;142
11.1.4.2;4.2 Flood Extent of Gurmana;145
11.1.4.3;4.3 Water Shade;145
11.1.4.4;4.4 Flood Extent Map of Gurmana Town;146
11.1.4.5;4.5 Vulnerability Map of Gurmana;146
11.1.4.5.1;4.5.1 Slope Angle;146
11.1.4.6;4.6 Flood Vulnerability Map of Gurmana;147
11.1.4.7;4.7 Impacts of the Flood on the Life and Property of the Residents of the Study Area;150
11.1.4.8;4.8 Conclusion;150
11.1.5;References;150
12;Part VII: Big Data and Data Mining of Geospatial Data;152
12.1;Remote Sensing Analysis of the Evolution and Retreat Dynamics of the Auchi Gully, Southwestern Nigeria;153
12.1.1;1 Introduction;153
12.1.2;2 Methodology;155
12.1.2.1;2.1 Apparent Slope Length (ASL) and Gully Floor Width (GF);155
12.1.2.2;2.2 Gully Wall Retreat (GWR);156
12.1.2.3;2.3 Headcut Retreat (HCR);156
12.1.2.4;2.4 Elevation;156
12.1.2.5;2.5 Precipitation;157
12.1.2.6;2.6 Geological Assessment;159
12.1.3;3 Results and Discussion;159
12.1.3.1;3.1 Topography;161
12.1.3.2;3.2 Precipitation;162
12.1.3.3;3.3 Land Use;162
12.1.3.4;3.4 Measured Gully Features;162
12.1.3.5;3.5 Geology;162
12.1.3.6;3.6 Gully System Dynamics;163
12.1.3.6.1;3.6.1 Gully Growth;163
12.1.3.6.2;3.6.2 Gully System Restoration;163
12.1.4;4 Conclusions;165
12.1.5;References;165
12.2;Optimizing the Selection of Spatial and Non-spatial Data for Higher Accuracy Multi-scale Classification of Urban Environments;167
12.2.1;1 Introduction;167
12.2.2;2 Data and Methodology;168
12.2.2.1;2.1 Dataset;168
12.2.2.2;2.2 Modelling the Urban Scene;168
12.2.2.3;2.3 Multi-scale Image Classification;171
12.2.3;3 Results;172
12.2.3.1;3.1 Segmentation;172
12.2.3.2;3.2 Classification Results;173
12.2.4;4 Discussion and Conclusion;174
12.2.5;References;174
12.3;Investigating the Potential of Common Earth Observation Satellite Imagery for Automated Multi-criteria Mapping of Urban Landsc...;176
12.3.1;1 Introduction;176
12.3.2;2 Study Area and Data Preparation;177
12.3.2.1;2.1 Study Area;177
12.3.3;3 Data Preparation;177
12.3.4;4 Image Classification Results;180
12.3.5;5 Conclusion;181
12.3.6;References;183
12.4;Integrating GIS and Remote Sensing for Suitability Assessment of Dams in Solai Nakuru: Kenya;185
12.4.1;1 Introduction;185
12.4.2;2 Methodology;186
12.4.2.1;2.1 Study Area;186
12.4.2.2;2.2 Objectives;186
12.4.2.3;2.3 Data Sources and Collection;186
12.4.2.4;2.4 Data Processing and Presentation;187
12.4.2.5;2.5 Topographical, Drainage and Climate;187
12.4.2.6;2.6 Land Use Land Cover and Demographic;188
12.4.2.7;2.7 Geological and Soil;191
12.4.2.8;2.8 Final Results;193
12.4.2.9;2.9 Discussion;193
12.4.3;3 Conclusions;194




