Buch, Englisch, Band 64, 228 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 535 g
Reihe: Monografie Matematyczne
Buch, Englisch, Band 64, 228 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 535 g
Reihe: Monografie Matematyczne
ISBN: 978-3-7643-7091-6
Verlag: Springer
Foliations, groups and pseudogroups are objects which are closely related via the notion of holonomy. In the 1980s they became considered as general dynamical systems. This book deals with their dynamics. Since "dynamics” is a very extensive term, we focus on some of its aspects only. Roughly speaking, we concentrate on notions and results related to different ways of measuring complexity of the systems under consideration. More precisely, we deal with different types of growth, entropies and dimensions of limiting objects. Invented in the 1980s (by E. Ghys, R. Langevin and the author) geometric entropy of a foliation is the principal object of interest among all of them.
Throughout the book, the reader will find a good number of inspirating problems related to the topics covered.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik Mathematik Geometrie Nicht-Euklidische Geometrie
- Naturwissenschaften Physik Angewandte Physik Statistische Physik, Dynamische Systeme
- Mathematik | Informatik Mathematik Algebra Lineare und multilineare Algebra, Matrizentheorie
- Mathematik | Informatik Mathematik Mathematische Analysis Differentialrechnungen und -gleichungen
- Mathematik | Informatik Mathematik Algebra Algebraische Strukturen, Gruppentheorie
Weitere Infos & Material
1 Dynamical systems.- 1.1 Pseudogroups.- 1.2 First examples.- 1.3 Foliations, laminations and holonomy.- 1.4 Markov pseudogroups.- 1.5 Hyperbolic spaces and groups.- 2 Growth.- 2.1 Growth types.- 2.2 Growth in groups.- 2.3 Orbit growth for pseudogroups.- 2.4 Expansion growth.- 3 Entropy.- 3.1 Entropy of classical systems.- 3.2 Entropy of pseudogroups.- 3.3 Geometric entropy of foliations.- 3.4 Relating various entropies.- 3.5 Examples and constructions.- 3.6 Entropy and resiliency.- 4 Invariant measures.- 4.1 Basic definitions and facts.- 4.2 Transverse invariant measures and homology.- 4.3 Measures and orbit growth.- 4.4 Transverse invariant measures in codimension 1.- 4.5 Vanishing entropy and invariant measures.- 4.6 Entropy, geodesic flow and invariant measures.- 4.7 Harmonic measures.- 4.8 Patterson—Sullivan measures.- 5 Hausdorff dimension.- 5.1 Definitions and basic facts.- 5.2 Julia sets.- 5.3 Dimension in foliated manifolds.- 5.4 Dimension of a hyperbolic boundary.- 5.5 Dimension of a limit set.- 6 Varia.- 6.1 Complexity growth.- 6.2 Expansive systems.- 6.3 Pseudo-orbits and pseudoleaves.- 6.4 Generic leaves.