E-Book, Englisch, Band 295, 468 Seiten
Weidner Deformation Processes in TRIP/TWIP Steels
1. Auflage 2020
ISBN: 978-3-030-37149-4
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
In-Situ Characterization Techniques
E-Book, Englisch, Band 295, 468 Seiten
Reihe: Springer Series in Materials Science
ISBN: 978-3-030-37149-4
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
This book demonstrates the potential of novel in-situ experiments, performed on microscopic and macroscopic length scales, for investigating localized deformation processes in metallic materials, particularly their kinetics and the associated evolution of local strain fields. It features a broad methodological portfolio, spanning optical and electron microscopy, digital image correlation, infrared theromgraphy and acoustic emission testing, and particularly focuses on identifying the localized microscopic deformation processes in high-strength/high-ductility CrMnNi TRIP/TWIP (TRansformation Induced Plasticity/TWinning Induced Plasticity) steels. Presenting state-of-the art methodology applied to topical and pertinent problems in materials engineering, this book is a valuable resource for researchers and graduate students working in the field of plasticity and deformation of structural materials.
Anja Weidner is a scientific staff member at the Institute of Materials Engineering at the Technische Universität Bergakademie Freiberg, Germany, where she studied materials science, and earned both doctorate and postdoctorate qualifications. Her primary research interests focus on plasticity, fatigue and related microstructural analysis of materials. Since 2011 she has been working as a team leader for the group 'Microstructural Analysis and Very High-Cycle Fatigue'. Additionally, she is a board member of two Collaborative Research Centres: SFB 799 'TRIP-Matrix-Composites' and SFB 920 'Multifunctional Filter and Filter Systems', both funded by the German Research Foundation (DFG). Since 2013 she has been acting as coordinator of the research group 'In-situ Testing in Scanning Electron Microscopy' within in the framework of the German Society for Materials Science. To date she has authored or co-authored over 94 peer-reviewed publications and has an h-index of 21.
Autoren/Hrsg.
Weitere Infos & Material
1;Preface;7
2;Acknowledgements;9
3;Contents;12
4;Abbreviations;16
5;Symbols;21
5.1;Plastic Deformation;21
5.2;Martensitic Phase Transformation;23
5.3;Advanced High Strength Steels;24
5.4;In Situ Techniques Acoustic Emission a Radius A\left( f \right) Transfer function (after Fourier transformation) \vec{b} Burgers vector c_{{\rm L}} Velocity of longitudinal wave c_{T} Velocity of transversal wave C_{i,\,\,j,\,\,k,\,\,l} Elastic stiffness tensor D Duration of AE event D_{ij} Force dipoles D Measure of distance D_{{\rm EUC}} Euclidean distance D_{{\rm MAN}} Manhattan distance D_{MIN} Minkowski distance \hbox{d}A_{l} \left( t \right) Time-dependent dislocation loop area \hbox{d}B_{AE} Decibel of acoustic emission E AE energy E\left( f \right) Source function (after Fourier transformation) E\left( {f_{1} ,f_{2} } \right) Narrow band energy f Frequency f_{{\rm a}} Averaged frequency f_{{\rm c}} Fundamental frequency f_{{\rm eff}} Effective width of spectrum f_{i} Observed frequency f_{{\rm m}} Median frequency f_{{\rm N}} Nyquist frequency (cut-off frequency) F_{i} Expected frequency G\left( f \right) Power spectral density function G^{{\rm noise}} \left( f \right) Power spectrum of electrical noise G_{{\rm max}} Maximum of power spectral density function G^{i} \left( f \right) Integrated power spectral density function G_{ij} Green’s function G^{{\rm H}} Heaviside Green’s function g\left( f \right) Normalized power spectral density function i , j , k , l Space variables K Number of class intervals K_{{\rm u},\,\,{\rm PA}} Gain of used pre-amplifier \hat{k} Space–time variable k Number of desired clusters k_{i} , k_{j} Individual clusters m Activity of acoustic emission (AE) m_{i} , m_{j} Centroids of individual clusters n_{i} , n_{j} Number of elements within each individual clusters N Number of counts, number of observations N Length of time-series {\Delta }N Number of AE hits P\left( x \right) Probability distribution function p_{1} , p_{2} , p_{3} Point coordinates q_{1} , q_{2} , q_{3} Point coordinates q_{{\rm f}} Kurtosis (frequency domain) q_{{\rm x}} Kurtosis (time domain) r Number of independent variables r Distance between source and epicentre r , r^{\prime} Space coordinates \vec{r}_{0} Centroid position of point-like source R Rise time R_{xx} \left( \tau \right) Auto-correlation function R_{yy} \left( \tau \right) Auto-correlation function R_{xy} \left( \tau \right) Cross-correlation function r_{x} \left( \tau \right) Normalized auto-correlation function r\left( \tau \right) Normalized auto-correlation function of Poisson distribution s_{{\rm f}} Skewness (frequency domain) s_{{\rm x}} Skewness (time domain) S_{1} , S_{2} , S_{3} Individual clusters t Time t , t^{\prime} Time coordinates {\Delta }t Unit time, time interval {\Delta }t_{{\rm s}} Sampling time interval T Displacement threshold T Transducer response u_{i} \left( {r,\,t} \right) Displacement in ith direction depending on space and time coordinates U\left( t \right) Voltage of measured signals at transducer \overline{{U^{2} }} Mean square voltage \overline{{U_{{\rm noise}}^{2} }} Average background noise U_{{\rm p}} Maximum AE amplitude, peak voltage U_{{\rm RMS}} Root mean square voltage U_{{\rm th}} Threshold value for voltage signal U_{z} Maximum displacement in z-direction (surface normal) v Velocity x_{1} , x_{2} , x_{3} Elements of data set X\left( t \right) Random data \hat{X}\left( t \right) Fourier transform of X\left( t \right) \hat{X}_{{\rm T}} \left( t \right) Truncated Fourier transform of X\left( t \right) Y\left( t \right) Random data Z_{{\rm cc}} Correlation coefficient \alpha Significance level \gamma_{{\rm merged}} Centroid drift vector \delta \left( {t - t^{\prime}} \right) Delta function \delta_{{\rm merged}} Inter-cluster distance \mu_{x} Mean value \mu_{x}^{\left( 1 \right)} First moment \mu_{x}^{\left( 2 \right)} Second moment \sigma Source function (time domain) \sigma Pre-existing vertical stress \sigma_{x} Standard deviation \sigma_{x}^{2} Variance (time domain) \sigma_{{\rm f}}^{2} Variance (frequency domain) \tau Inter-event time interval \tau_{0} Relaxation time \chi^{2} Chi-square function {X}^{2} Goodness-of-fit test {\Psi }^{2} \left( t \right) Mean square value;25
5.5;Displacement and Strain Fields;28
5.6;Temperature Fields;29
5.7;Fully-Coupled Measurements;30
5.8;High-alloy CrMnNi TRIP/TWIP Steels;31
5.9;Case Studies;31
6;List of Figures;1
7;List of Tables;1
8;1 Motivation;34
8.1;References;38
9;2 Plastic Deformation and Strain Localizations;39
9.1;Abstract;39
9.2;2.1 Plastic Deformation;39
9.3;2.2 Dislocation Glide;43
9.4;2.3 Deformation Twinning;47
9.5;2.4 Critical Resolved Shear Stress;51
9.6;2.5 Strain Hardening;53
9.7;2.6 Strain Localizations;56
9.7.1;2.6.1 Strain Localizations on Microscopic Scale;59
9.7.1.1;2.6.1.1 Slip Bands/Deformation Bands;59
9.7.1.2;2.6.1.2 Persistent Slip Bands;60
9.7.1.3;2.6.1.3 Shear Bands;63
9.7.2;2.6.2 Strain Localizations on Macroscopic Scale;65
9.7.2.1;2.6.2.1 Lüders Effect;67
9.7.2.2;2.6.2.2 Portevin–Le Chatelier Effect;69
9.8;References;73
10;3 Martensitic Phase Transformation;78
10.1;Abstract;78
10.2;3.1 General Considerations;78
10.3;3.2 Thermodynamic Aspects of Martensitic Phase Transformation;81
10.4;3.3 Martensite in Ferrous Alloys;83
10.5;3.4 Martensitic Phase Transformation in Steels;85
10.5.1;3.4.1 Direct ? to ?? Transformation;86
10.5.2;3.4.2 Direct ? to ? Transformation;91
10.5.3;3.4.3 Direct ? to ?? Transformation;92
10.5.4;3.4.4 Indirect ?–?? Transformation via ?-Martensite;93
10.6;3.5 Influence of Stacking-Fault Energy;94
10.7;3.6 Olson–Cohen Model of Martensitic Phase Transformation;97
10.8;References;99
11;4 Advanced High-Strength Steels;101
11.1;Abstract;101
11.2;4.1 General Considerations;101
11.3;4.2 Twinning-Induced Plasticity (TWIP) Steels;103
11.3.1;4.2.1 Thermodynamic Aspects of TWIP Steels;103
11.3.2;4.2.2 Deformation Behaviour of TWIP Steels;104
11.3.3;4.2.3 Modelling of the TWIP Effect;110
11.4;4.3 Transformation-Induced Plasticity (TRIP) Steels;113
11.4.1;4.3.1 Thermodynamic Aspects of TRIP Steels;114
11.4.2;4.3.2 Deformation Behaviour of TRIP Steels;119
11.4.3;4.3.3 Modelling of the TRIP Effect;124
11.5;References;126
12;5 In Situ Techniques for Characterization of Strain Localizations and Time Sequence of Deformation Processes;129
12.1;Abstract;129
12.2;5.1 General Considerations;129
12.3;5.2 In Situ Imaging Techniques;132
12.3.1;5.2.1 Optical Microscopy;132
12.3.1.1;5.2.1.1 In Situ Experiments with Optical Microscopy;133
12.3.1.2;5.2.1.2 State of the Art in Materials Engineering;134
12.3.2;5.2.2 Scanning Electron Microscopy;138
12.3.2.1;5.2.2.1 In Situ Experiments in Scanning Electron Microscopes;139
12.3.2.2;5.2.2.2 State of the Art in Materials Engineering;141
12.4;5.3 In Situ Acoustic Emission Measurements;145
12.4.1;5.3.1 General Aspects of Acoustic Emission;146
12.4.2;5.3.2 Acoustic Emission—A Multiscale Random Time-Series Process;149
12.4.3;5.3.3 Sources of Acoustic Emission;160
12.4.4;5.3.4 Instrumentation and Data Acquisition;165
12.4.5;5.3.5 Processing of AE Data;170
12.4.6;5.3.6 State of the Art in Materials Engineering;181
12.5;5.4 In Situ Full-Field Measurement Techniques;186
12.5.1;5.4.1 Displacement and Strain Fields;187
12.5.1.1;5.4.1.1 General Aspects of Digital Image Correlation;188
12.5.1.2;5.4.1.2 Principles of Digital Image Correlation;191
12.5.1.3;5.4.1.3 Computation of 2D Strain Values;197
12.5.1.4;5.4.1.4 State of the Art in Materials Engineering;202
12.5.2;5.4.2 Temperature Fields;209
12.5.2.1;5.4.2.1 General Aspects of Infrared Thermography;210
12.5.2.2;5.4.2.2 Heat Sources and Dissipated Energy;214
12.5.2.3;5.4.2.3 State of the Art in Materials Engineering;218
12.5.3;5.4.3 Fully-Coupled Measurements;221
12.6;References;225
13;6 Object of Investigations—High-Alloy Fe–16Cr–6Mn–xNi–0.05C Cast Steels with TRIP/TWIP Effect;234
13.1;Abstract;234
13.2;6.1 General Considerations on High-Alloy Fe–16Cr–6Mn–xNi–0.05C TRIP/TWIP Steels;234
13.3;6.2 Applied Methods for Characterization of the Deformation Behaviour and the Related Microstructures;238
13.3.1;6.2.1 Deformation Experiments;238
13.3.2;6.2.2 Microstructural Characterization Techniques;239
13.4;6.3 Mechanical Behaviour;242
13.4.1;6.3.1 Uniaxial Quasi-static Loading;242
13.4.2;6.3.2 Uniaxial Cyclic Loading;246
13.4.3;6.3.3 Planar-Biaxial Loading;248
13.5;6.4 Microstructure Evolution;250
13.5.1;6.4.1 Fe–16Cr–6Mn–6Ni–0.05C Steel;250
13.5.2;6.4.2 Fe–16Cr–6Mn–9Ni–0.05C Steel;267
13.5.3;6.4.3 Fe–16Cr–6Mn–3Ni–0.05C Steel;270
13.6;References;272
14;7 Case Studies on Localized Deformation Processes in High-Alloy Fe–16Cr–6Mn–xNi–0.05C Cast Steels;274
14.1;Abstract;274
14.2;7.1 Significance of Complementary In Situ Characterization Techniques;274
14.3;7.2 Microscopic Strain Localizations During Plastic Deformation;278
14.3.1;7.2.1 In Situ Deformation in the Scanning Electron Microscope;278
14.3.2;7.2.2 High-Resolution DIC (Sub-µDIC) for Evaluation of Local Strain Fields;280
14.3.3;7.2.3 Strain Localization During Tensile Deformation;283
14.3.4;7.2.4 Orientation-Dependent Magnitude of Shear of Individual Martensitic Grains;302
14.3.5;7.2.5 Magnitude of Shear of Twin Bundles;306
14.3.6;7.2.6 Strain Localization During Cyclic Deformation;310
14.3.7;7.2.7 Discussion;336
14.4;7.3 Time Sequence of Deformation Processes;342
14.4.1;7.3.1 Acoustic Emission Measurements and Analysis;342
14.4.2;7.3.2 Acoustic Emission During the Deformation Process;344
14.4.3;7.3.3 Influence of Chemical Composition;352
14.4.4;7.3.4 Evolution of Martensitic Phase Transformation at Room Temperature;359
14.4.5;7.3.5 Influence of Deformation Temperature;360
14.4.6;7.3.6 Discussion;367
14.5;7.4 Macroscopic Strain Localization During Plastic Deformation;369
14.5.1;7.4.1 Fully-Coupled Full-Field Measurements;370
14.5.2;7.4.2 The Occurrence of Portevin–Le Chatelier (PLC) Effect;371
14.5.3;7.4.3 Temperature and Strain Fields;375
14.5.4;7.4.4 Portevin–Le Chatelier Effect and Acoustic Emission;382
14.5.5;7.4.5 Correlation of PLC Effect with Martensitic Volume Fraction;383
14.5.6;7.4.6 Discussion;389
14.6;References;392
15;8 Prospects of Complementary In Situ Techniques;394
15.1;Abstract;394
15.2;8.1 General Remarks;394
15.3;8.2 Complementary In Situ Techniques and Microstructural-Based Modelling;397
15.4;8.3 Example 1: Modelling of Strain-Hardening Behaviour of CrMnNi TRIP/TWIP Steels;400
15.4.1;8.3.1 Orientation Dependence of Deformation Mechanisms Detected by AE;403
15.4.2;8.3.2 Strain Localizations Across the Length Scale of Microstructure;404
15.5;8.4 Example 2: Damage Behaviour of TRIP Matrix Composites;408
15.6;8.5 Example 3: Deformation and Damage Behaviour of Laminated TRIP/TWIP Composites;410
15.7;8.6 Example 4: Shape Memory Materials;411
15.8;References;412
16;9 Concluding Remarks;414
17;Appendix;419
18;References;420
19;References;420
20;References;420
21;References;420
22;References;420
23;References;420
24;References;420
25;References;420
26;References;420
27;References;420
28;Index;464
29;488628_1_En_10_Chapter_OnlinePDF.pdf;1
29.1;10 Correction to: Deformation Processes in TRIP/TWIP Steels;418
29.1.1;Correction to: A. Weidner, Deformation Processes in TRIP/TWIP Steels, Springer Series in Materials Science 295, https://doi.org/10.1007/978-3-030-37149-4;418




