Wess / Richter / Althoff | Topics in Case-Based Reasoning | Buch | 978-3-540-58330-1 | sack.de

Buch, Englisch, Band 837, 476 Seiten, Paperback, Format (B × H): 155 mm x 235 mm, Gewicht: 1500 g

Reihe: Lecture Notes in Computer Science

Wess / Richter / Althoff

Topics in Case-Based Reasoning

First European Workshop, EWCBR-93, Kaiserslautern, Germany, November 1-5, 1993. Selected Papers

Buch, Englisch, Band 837, 476 Seiten, Paperback, Format (B × H): 155 mm x 235 mm, Gewicht: 1500 g

Reihe: Lecture Notes in Computer Science

ISBN: 978-3-540-58330-1
Verlag: Springer Berlin Heidelberg


This volume presents the 36 full refereed papers selected from the presentations at the First European Workshop on Case-Based Reasoning, held at Kaiserslautern, Germany in November 1993.
Case-based reasoning (CBR) has recently attracted much interest among AI researchers: it supports knowledge acquisition and problem solving, and it is related to machine learning, analogical reasoning, cognitive modeling, similarity, and information retrieval. EWCBR is now established as the prime European forum for CBR research. This volume reflects the importance of this dynamic area of research through essential contributions to all aspects of CBR research and advanced applications.
Wess / Richter / Althoff Topics in Case-Based Reasoning jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Understanding creativity: A case-based approach.- Analogical asides on case-based reasoning.- PRODILOGY/ANALOGY: Analogical reasoning in general problem solving.- A knowledge level model of knowledge-based reasoning.- Learning prediction of time series. A theoretical and empirical comparison of CBR with some other approaches.- Case-based and symbolic classification.- A Similarity metric for retrieval of cases imperfectly explained.- Similarity measures for structured representations.- A rule-based similarity measure.- An underlying memory model to support case retrieval.- Massively parallel case-based reasoning with probabilistic similarity metrics.- Similarity evaluation between observed behaviours for the prediction of processes.- Using k-d trees to improve the retrieval step in case-based reasoning.- Explanation-based similarity: A unifying approach for integrating domain knowledge into case-based reasoning for diagnosis and planning tasks.- Structural similarity as guidance in case-based design.- Retrieving adaptable cases.- Adaptation through interpolation for time-critical case-based reasoning.- Knowledge engineering requirements in derivational analogy.- Incorporating (Re)-interpretation in case-based reasoning.- PBL: Prototype-based learning algorithm.- Explanation-driven case-based reasoning.- A reflective architecture for integrated memory-based learning and reasoning.- A hybrid knowledge-based system for technical diagnosis learning and assistance.- Tuning rules by cases.- Using case-based reasoning to focus model-based diagnostic problem solving.- A logical representation for relevance criteria.- Multiple explanation patterns.- The application of case-based reasoning to the tasks of health care planning.- A priori selection of mesh densities for adaptive finite element analysis, using a case-based reasoning approach.- Integrating semantic structure and technical documentation in case-based service support Systems.- Case-based information retrieval.- Case-based reasoning for network management.- Case-based reasoning in a simulation environment for biological neural networks.- Integrated case-based building design.- Case-deliverer: Making cases relevant to the task at hand.- A first study on case-based planning in organic synthesis.


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.