Buch, Englisch, Band 236, 706 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 1077 g
Aachen, Germany, August 2016
Buch, Englisch, Band 236, 706 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 1077 g
Reihe: Springer Proceedings in Mathematics & Statistics
ISBN: 978-3-030-08272-7
Verlag: Springer International Publishing
The first of two volumes, this edited proceedings book features research presented at the XVI International Conference on Hyperbolic Problems held in Aachen, Germany in summer 2016. It focuses on the theoretical, applied, and computational aspects of hyperbolic partial differential equations (systems of hyperbolic conservation laws, wave equations, etc.) and of related mathematical models (PDEs of mixed type, kinetic equations, nonlocal or/and discrete models) found in the field of applied sciences.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
Weitere Infos & Material
Abels, H., Daube, J., Kraus, C. and Kröner, D: The Sharp-Interface Limit for the Navier–Stokes–Korteweg Equations.- Abreu, E., Bustos, A. and Lambert, W. J: Asymptotic Behavior of a Solution of Relaxation System for Flow in Porous Media.- Alessandri, A., Bagnerini, P., Cianci, R. and Gaggeroi, M: Optimal Control of Level Sets Generated by the Normal Flow Equation.- Amadori, D. and Park, J: Emergent Dynamics for the Kinetic Kuramoto Equation.- Ancellin, M., Brosset, L. and Ghidaglia, J-M: A Hyperbolic Model of Non-Equilibrium Phase Change at a Sharp Liquid-Vapor Interface.- Antonelli, P., D’Amico, M. and Marcati, P: The Cauchy Problem for the Maxwell-Schrodinger System with a Power-Type Nonlinearity.- Aregba-Driollet, D. and Brull, S: Construction and Approximation of the Polyatomic Bitemperature Euler System.- Arun, K. R., Das Gupta, A. J. and Samantaray, S: An Implicit-Explicit Scheme Accurate at Low Mach Numbers for the Wave Equation System.- Ballew, J: Bose-Einstein Condensation andGlobal Dynamics of Solutions to a Hyperbolic Kompaneets Equation.- Barth, A. and Kroker, I: Finite Volume Methods for Hyperbolic Partial Differential Equations with Spatial Noise.- Baty, H. and Nishikawa, H: A Hyperbolic Approach for Dissipative Magnetohydrodynamics.- Berberich, J., Chandrashekar, P. and Klingenberg, C: A General Well-Balanced Finite Volume Scheme for Euler Equations with Gravity.- Berthon, C., Loubre, R. and Michel-Dansac, V: A Second-Order Well-Balanced Scheme for the Shallow-Water Equations with Topography.- Bianchini, S. and Marconi, E: A Lagrangian Approach to Scalar Conservation Laws.- Bonicatto, P: On Uniqueness of Weak Solutions to Transport Equation with Non-Smooth Velocity Field.- Boyaval, S: Johnson-Segalman – Saint-Venant Equations for a 1D Viscoelastic Shallow Flow in Pure Elastic Limit.- Bragin, M. D. and Rogov, B. V: On the Exact Dimensional Splitting for a Scalar Quasilinear Hyperbolic Conservation Law.- Brenier, Y: On the Derivation of the Newtonian Gravitation from the Brownian Agrigation of a Regu