Westdickenberg / Klingenberg | Theory, Numerics and Applications of Hyperbolic Problems I | Buch | 978-3-030-08272-7 | sack.de

Buch, Englisch, Band 236, 706 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 1077 g

Reihe: Springer Proceedings in Mathematics & Statistics

Westdickenberg / Klingenberg

Theory, Numerics and Applications of Hyperbolic Problems I

Aachen, Germany, August 2016
Softcover Nachdruck of the original 1. Auflage 2018
ISBN: 978-3-030-08272-7
Verlag: Springer International Publishing

Aachen, Germany, August 2016

Buch, Englisch, Band 236, 706 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 1077 g

Reihe: Springer Proceedings in Mathematics & Statistics

ISBN: 978-3-030-08272-7
Verlag: Springer International Publishing


The first of two volumes, this edited proceedings book features research presented at the XVI International Conference on Hyperbolic Problems held in Aachen, Germany in summer 2016. It focuses on the theoretical, applied, and computational aspects of hyperbolic partial differential equations (systems of hyperbolic conservation laws, wave equations, etc.) and of related mathematical models (PDEs of mixed type, kinetic equations, nonlocal or/and discrete models) found in the field of applied sciences.

Westdickenberg / Klingenberg Theory, Numerics and Applications of Hyperbolic Problems I jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Abels, H., Daube, J., Kraus, C. and Kröner, D: The Sharp-Interface Limit for the Navier–Stokes–Korteweg Equations.- Abreu, E., Bustos, A. and Lambert, W. J: Asymptotic Behavior of a Solution of Relaxation System for Flow in Porous Media.- Alessandri, A., Bagnerini, P., Cianci, R. and Gaggeroi, M: Optimal Control of Level Sets Generated by the Normal Flow Equation.- Amadori, D. and Park, J: Emergent Dynamics for the Kinetic Kuramoto Equation.- Ancellin, M., Brosset, L. and Ghidaglia, J-M: A Hyperbolic Model of Non-Equilibrium Phase Change at a Sharp Liquid-Vapor Interface.- Antonelli, P., D’Amico, M. and Marcati, P: The Cauchy Problem for the Maxwell-Schrodinger System with a Power-Type Nonlinearity.- Aregba-Driollet, D. and Brull, S: Construction and Approximation of the Polyatomic Bitemperature Euler System.- Arun, K. R., Das Gupta, A. J. and Samantaray, S: An Implicit-Explicit Scheme Accurate at Low Mach Numbers for the Wave Equation System.- Ballew, J: Bose-Einstein Condensation andGlobal Dynamics of Solutions to a Hyperbolic Kompaneets Equation.- Barth, A. and Kroker, I: Finite Volume Methods for Hyperbolic Partial Differential Equations with Spatial Noise.- Baty, H. and Nishikawa, H: A Hyperbolic Approach for Dissipative Magnetohydrodynamics.- Berberich, J., Chandrashekar, P. and Klingenberg, C: A General Well-Balanced Finite Volume Scheme for Euler Equations with Gravity.- Berthon, C., Loubre, R. and Michel-Dansac, V: A Second-Order Well-Balanced Scheme for the Shallow-Water Equations with Topography.- Bianchini, S. and Marconi, E: A Lagrangian Approach to Scalar Conservation Laws.- Bonicatto, P: On Uniqueness of Weak Solutions to Transport Equation with Non-Smooth Velocity Field.- Boyaval, S: Johnson-Segalman – Saint-Venant Equations for a 1D Viscoelastic Shallow Flow in Pure Elastic Limit.- Bragin, M. D. and Rogov, B. V: On the Exact Dimensional Splitting for a Scalar Quasilinear Hyperbolic Conservation Law.- Brenier, Y: On the Derivation of the Newtonian Gravitation from the Brownian Agrigation of a Regu


Christian Klingenberg is a professor in the Department of Mathematics at Wuerzburg University, Germany. 

Michael Westdickenberg is a professor at the Institute for Mathematics at RWTH Aachen University, Germany.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.