Eine Einführung für Naturwissenschaftler
Buch, Deutsch, 327 Seiten, Format (B × H): 170 mm x 244 mm, Gewicht: 601 g
ISBN: 978-3-663-07788-6
Verlag: Vieweg+Teubner Verlag
Dieses Buch verfolgt das Ziel, Naturwissenschaftler mit den Methoden der röntgenographischen Kristallstrukturanalyse vertraut zu machen. Das Schwergewicht der Darstellung liegt auf der anwendungstechnischen Seite. So werden z. B. die wichtigen Aufnahmeverfahren sowie die automatischen Diffraktometer ausführlich behandelt und die verschiedenen Methoden zur Lösung des Phasenproblems an Hand von Beispielen ausführlich besprochen.
Zielgruppe
Graduate
Autoren/Hrsg.
Weitere Infos & Material
I. Kristallographische Grundlagen.- a) Symmetrieelemente und stereographische Projektion.- b) Kristallklassen und Kristallsysteme.- c) Kristallform, Kristallgestalt, Elementarzelle und Kristallgitter.- d) Die Wechselwirkung zwischen Translationsvektoren und Symmetrieelementen.- e) Die Bravais-Gitter.- f) Die Raumgruppen des monoklinen Systems.- II. Emission und Absorption von Röntgenstrahlen.- a) Emission von Röntgenstrahlen.- b) Absorption von Röntgenstrahlen.- III. Die Beugung von Röntgenstrahlen an Kristallgittern (wellenkinematische Theorie).- a) Das reziproke Gitter.- b) Die Vektorform der Bragg’schen Gleichung und die Ewald’sche Lagekugel.- c) Elastische Streuung von Röntgenstrahlen am Elektron.- d) Die Atomformamplitude f.- e) Die Strukturamplitude Fhkl.- f) Die Beugung von Röntgenstrahlen am Kristallgitter.- g) Das integrale Reflexionsvermögen von Einkristallen.- h) Quantitative Intensitätsmessungen an Pulverpräparaten.- i) Der Debye-Waller’sche Temperaturfaktor.- IV. Röntgengoniometer für Filmaufnahmen.- a) Oszillationsaufnahmen von Einkristallen.- b) Justierung eines Kristalles auf lichtoptischem Wege und mittels Oszillationsaufnahmen.- c) Das Weissenberg-Aufnahmeverfahren.- d) Das de Jong-Bouman-Aufnahmeverfahren.- e) Das Buerger-Präzessionsverfahren.- f) Die Kombination von de Jong-Bouman — und Buerger-Präzessionsaufnahmen am Explorer für die verschiedenen Kristallsysteme.- g) Die Justierung einer Kristallachse in die Richtung des einfallenden Röntgenstrahles mittels Buerger- Präzessionsaufnahmen.- h) Die Bestimmung der Gitterkonstanten eines triklinen Kristalles am Explorer.- V. Die röntgenographische Bestimmung der Raumgruppe.- a) Symmetriebeziehungen zwischen Kristallraum und reziprokem Raum.- b) Der Einfluß derTranslationsvektoren im Kristallraum auf den reziproken Raum: Integrale, zonale und seriale Auslöschungen.- c) Inwieweit ist die röntgenographische Raumgruppenbestimmung eindeutig?.- d) Physikalische Methoden zur Ermittlung des Inversionszentrums einer Kristallstruktur.- VI. Automatische Einkristall-Diffraktometer.- a) Automatische 4-Kreis-Diffraktometer.- b) Halbautomatische 2-Kreis-WeissenbergDiffraktometer.- c) Vorbereitung des Kristalles für die automatische Messung.- d) Die Sammlung der Meßdaten.- e) Datenreduktion.- VII. Über die Bestimmung der Atomlagen in der Elementarzelle. Einführung in die Methoden zur Lösung des Phasenproblems.- a) Einleitung.- b) Theorie der Fourierreihen.- c) Theorie der Pattersonreihen.- d) Schwer-Atom-Methode zur Lösung des Phasenproblems.- e) Theorie der direkten Methoden.- f) Praktische Anwendung der direkten Phasenbestimmung.- g) Die Bedeutung der anormalen Dispersion für die röntgenographische Strukturbestimmung.- h) Rechenprogramme zur röntgenographischen Strukturbestimmung an Kleinrechnern.- VIII. Die Verfeinerung der Atomlagen.- a) Die Methode der kleinsten Fehlerquadrate.- b) Differenz-Fouriersynthesen.- IX. Beispiele für Kristallstrukturbestimmungen.- a) Die Kristallstruktur des Magnesiumfluorids (MgF2).- b) Die Kristallstruktur des Kalium-(Rubidium)- Hydrogen-Phenyl-acetats.- c) Die Kristallstruktur des Tetraferrocenyläthans.- Literaturübersicht.- Register.