Buch, Englisch, 300 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 698 g
ISBN: 978-3-030-98338-3
Verlag: Springer-Verlag GmbH
This textbook introduces quantum computing to readers who do not have much background in linear algebra. The author targets undergraduate and master students, as well as non-CS and non-EE students who are willing to spend about 60 -90 hours seriously learning quantum computing. Readers will be able to write their program to simulate quantum computing algorithms and run on real quantum computers on IBM-Q. Moreover, unlike the books that only give superficial, “hand-waving” explanations, this book uses exact formalism so readers can continue to pursue more advanced topics based on what they learn from this book. - Encourages students to embrace uncertainty over the daily classical experience, when encountering quantum phenomena;
- Uses narrative to start each section with analogies that help students to grasp the critical concept quickly;
- Uses numerical substitutions, accompanied by Python programming and IBM-Q quantum computer programming, as examples in teaching all critical concepts.
Zielgruppe
Upper undergraduate
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik EDV | Informatik Programmierung | Softwareentwicklung Programmierung: Methoden und Allgemeines
- Technische Wissenschaften Elektronik | Nachrichtentechnik Elektronik Bauelemente, Schaltkreise
- Mathematik | Informatik EDV | Informatik Technische Informatik Quantencomputer, DNA-Computing
Weitere Infos & Material
The Most Important Step to Understand Quantum Computing.- First Impression.- Basis, Basis Vectors, and Inner Product.- Orthonormal Basis, Bra-Ket Notation, and Measurement.- Changing Basis, Uncertainty Principle, and Bra-ket Operations.- Observables, Operators, Eigenvectors, and Eigenvalues.- Pauli Spin Matrices, Adjoint Matrix, and Hermitian Matrix.- Operator Rules, Real Eigenvalues, and Projection Operator.- Eigenvalue and Matrix Diagonalization; Unitary Matrix.- Unitary Transformation, Completeness, and Construction of Operator.- Hilbert Space, Tensor Product, and Multi-Qubit.- Tensor Product of Operators, Partial Measurement, and Matrix Representation in a Given Basis.- Quantum Register and Data Processing, Entanglement and the Bell States.- Concepts Review, Density Matrix, and Entanglement Entropy.- Quantum Gate Introduction; NOT and C-NOT Gates.- SWAP, Phase Shift and CC-NOT (Toffoli) Gates.- Walsh-Hadamard Gate and its Properties.- 13 more chapters.