Woungang / Dhurandher | 2nd International Conference on Wireless Intelligent and Distributed Environment for Communication | E-Book | www.sack.de
E-Book

E-Book, Englisch, Band 27, 272 Seiten

Reihe: Lecture Notes on Data Engineering and Communications Technologies

Woungang / Dhurandher 2nd International Conference on Wireless Intelligent and Distributed Environment for Communication

WIDECOM 2019
1. Auflage 2019
ISBN: 978-3-030-11437-4
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark

WIDECOM 2019

E-Book, Englisch, Band 27, 272 Seiten

Reihe: Lecture Notes on Data Engineering and Communications Technologies

ISBN: 978-3-030-11437-4
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark



This book presents the proceedings of the International Conference on Wireless Intelligent and Distributed Environment for Communication (WIDECOM 2019), sponsored by the University of Milan, Milan, Italy, February 11-13, 2019. The conference deals both with the important core and the specialized issues in the areas of new dependability paradigms design and performance of dependable network computing and mobile systems, as well as issues related to the security of these systems. The WIDECOM proceedings features papers addressing issues related to the design, analysis, and implementation, of infrastructures, systems, architectures, algorithms, and protocols that deal with network computing, mobile/ubiquitous systems, cloud systems, and IoT systems. It is a valuable reference for researchers, instructors, students, scientists, engineers, managers, and industry practitioners. The book's structure and content is organized in such a manner that makes it useful at a variety of learning levels.Presents the proceedings of the International Conference on Wireless Intelligent and Distributed Environment for Communication (WIDECOM 2019), Milan, Italy, February 11-13, 2019;Includes an array of topics networking computing, mobile/ubiquitous systems, cloud systems, and IoT systems;Addresses issues related to protecting information security and establishing trust in the digital space.

Professor Isaac Woungang received his Ph.D. degree in Mathematics from the University of South, Toulon and Var, France. From 1999 to 2002, he worked as a software engineer in the Photonic Line Systems Group, Nortel Networks, Ottawa, Ontario, Canada. Since 2002, he has been with Ryerson University, where he is now a full professor of Computer Science and Director of the Distributed Applications and Broad band (DABNEL) Research Lab. Dr. Woungang has published 10 books and over 92 refereed technical articles in scholarly international journals and proceedings of international conferences. He has served as Associate Editor of the Computers and Electrical Engineering (Elsevier), and the International Journal of Communication Systems (Wiley). He has Guest Edited several Special Issues with various reputed journals such as IET Information Security, Mathematical and Computer Modeling (Elsevier), Computer Communications (Elsevier), Computers and Electrical Engineering (Elsevier), and Telecommunication Systems (Springer). From 2012 to 2017, he served as Chair of Computer Chapter, IEEE Toronto Section. Professor Sanjay Kumar Dhurandher received the M. Tech. and Ph.D. Degrees in Computer Sciences from the Jawaharlal Nehru University, New Delhi, India. He is presently working as a Professor in the Department of Information Technology, Netaji Subhas University of Technology (Formerly NSIT) New Delhi, India. He is also the Head of the IT Department at NSUT and the Head of the Advanced Centre CAITFS, Department of Information Technology, NSUT, New Delhi. He is a Senior Member of IEEE.Currently, he is serving as the Associate Editor of the International Journal of Communication Systems published by John Wiley & Sons and even as the Associate Editor of Security and Privacy Journal, by John Wiley & Sons. He served as a Guest Editor, to the Special Issue of Computers & Electrical Engineering by Elsevier and IET Communications. He has even written/edited a book titled 'Routing in Opportunistic Networks' published by Springer. From 1995 to 2000 he worked as a Scientist/Engineer at the Institute for Plasma Research, Gujarat, India which is under the Department of Atomic Energy, India. His current research interests include Wireless ad-hoc Networks, Sensor Networks, Computer Networks, Network Security, Underwater Sensor Networks, Opportunistic Networks and Cognitive Radio Networks.

Woungang / Dhurandher 2nd International Conference on Wireless Intelligent and Distributed Environment for Communication jetzt bestellen!

Weitere Infos & Material


1;Welcome Message from WIDECOM 2019 General Chair;6
2;Welcome Message from the WIDECOM 2019 Program Cochairs;8
3;WIDECOM 2019 Organizing Committee;9
4;WIDECOM 2019 Keynote Talks;11
4.1;From WSNs to VANETs: Paradigms, Technologies, and Open Research Issues for Challenged Networks;11
4.2;Making Sense(s) of Smart Contracts in a Connected World;11
5;WIDECOM 2019 Tutorials;13
5.1;Tutorial 1: High-Speed Cryptography;13
5.2;Tutorial 2: Understanding the Key Pre-distribution Aspect of Linear Wireless Sensor Network;13
5.3;Tutorial 3: Efficient Cryptographic Algorithms for Securing Passwords;14
6;Contents;15
7;1 Performance Evaluation of G.711 and GSM Codecs on VoIP Applications Using OSPF and RIP Routing Protocols;17
7.1;1.1 Introduction;17
7.2;1.2 Background;18
7.2.1;1.2.1 Voice Encoding Codec;18
7.2.2;1.2.2 Routing Protocols;18
7.3;1.3 Related Work;19
7.4;1.4 Network Model;20
7.4.1;1.4.1 Network Topology;20
7.4.2;1.4.2 Configuration Parameters;21
7.4.3;1.4.3 Routing Scenarios;23
7.5;1.5 Simulation Results;23
7.5.1;1.5.1 Traffic Sent;24
7.5.2;1.5.2 Traffic Received;24
7.5.3;1.5.3 Jitter;25
7.5.4;1.5.4 End-to-End Delay;27
7.5.5;1.5.5 Packet Delay Variation;28
7.5.6;1.5.6 Mean Opinion Score;29
7.6;1.6 Conclusion;30
7.7;References;31
8;2 Cyclic Redundancy Check Based Data Authenticationin Opportunistic Networks;33
8.1;2.1 Introduction;33
8.2;2.2 Related Work;35
8.3;2.3 Overview of CRC (Cyclic Redundancy Check);35
8.4;2.4 Proposed Work;36
8.4.1;2.4.1 Assumptions;36
8.4.2;2.4.2 Authentication Key;36
8.4.3;2.4.3 Algorithm;37
8.5;2.5 Results and Analysis;39
8.6;2.6 Conclusion;41
8.7;References;41
9;3 Hybrid Cryptographic Based Approach for Privacy Preservation in Location-Based Services;43
9.1;3.1 Introduction;43
9.2;3.2 Literature Survey;44
9.2.1;3.2.1 Categorization of Crypto-Based Privacy Model for LBS;44
9.2.1.1;3.2.1.1 TTP Free Schema;44
9.3;3.3 Motivation of Proposed Approach;45
9.4;3.4 Experimental Results and Evaluation;47
9.4.1;3.4.1 Datasets;47
9.4.2;3.4.2 Density Based Clustering Algorithms;47
9.4.3;3.4.3 Results;47
9.5;3.5 Conclusion;49
9.6;References;49
10;4 Design of Energy-Aware PRoPHET and Spray-and-Wait Routing Protocols for Opportunistic Networks;51
10.1;4.1 Introduction;51
10.2;4.2 Background and Related Work;52
10.2.1;4.2.1 PRoPHET;52
10.2.2;4.2.2 Spray-and-Wait;53
10.2.3;4.2.3 Related Work;54
10.3;4.3 Proposed EPRoPHET Routing Protocol;54
10.3.1;4.3.1 EPRoPHET;54
10.3.2;4.3.2 ES&W Routing Protocol;55
10.4;4.4 Performance Evaluation;55
10.4.1;4.4.1 Simulation Parameters;55
10.4.2;4.4.2 Performance Matrix;57
10.5;4.5 Simulation Results;58
10.5.1;4.5.1 Comparison of EPRoPHET and PRoPHET;58
10.5.2;4.5.2 Comparison of S&W and ES&W Routing Protocol;59
10.5.3;4.5.3 Comparison of ES&W and EPRoPHET Routing Protocol;60
10.6;4.6 Conclusion;61
10.7;References;61
11;5 An Asymmetric RSA-Based Security Approach for Opportunistic IoT;63
11.1;5.1 Introduction;63
11.2;5.2 Literature Review;64
11.3;5.3 Proposed Work;66
11.3.1;5.3.1 A Secure Location Prediction-Based Forwarding Scheme for Opportunistic Internet of Things;66
11.4;5.4 Simulation Results;68
11.5;5.5 Conclusion;74
11.6;References;75
12;6 Performance Analysis of A*-Based Hop Selection Techniquein Opportunistic Networks Through Movement Mobility Models;77
12.1;6.1 Introduction;77
12.2;6.2 Related Work and Background;78
12.2.1;6.2.1 A* Search-Based Next Hop Selection Routing Protocol: A*OR;78
12.2.2;6.2.2 Random Way-Point Model;78
12.2.3;6.2.3 Shortest Path Map-Based Movement Model;79
12.2.4;6.2.4 Real Time Traces;79
12.3;6.3 Experimental Setup;80
12.3.1;6.3.1 Experiment Performance Metric Setup;80
12.3.2;6.3.2 Experimental Environment;80
12.4;6.4 Experiment Result Analysis;81
12.5;6.5 Conclusion and Future Work;89
12.6;References;89
13;7 Data Loss Prevention Using Document Semantic Signature;91
13.1;Abbreviations;91
13.2;7.1 Introduction;92
13.2.1;7.1.1 Context;92
13.2.2;7.1.2 Research Problem and Contribution;93
13.2.3;7.1.3 Approach Overview;93
13.3;7.2 Related Works;94
13.3.1;7.2.1 On Insider Threat Detection and Prediction;94
13.3.2;7.2.2 On DLP;95
13.3.3;7.2.3 On Ontology-Based Search and Information Retrieval;96
13.3.4;7.2.4 On Ontology Management and Semantic Models;97
13.4;7.3 Proposed DLP Model;98
13.4.1;7.3.1 Ontology Concept Tree;98
13.4.2;7.3.2 Document Concept Map;99
13.4.3;7.3.3 Document Concept Tree;99
13.4.4;7.3.4 Document Semantic Signature;100
13.4.5;7.3.5 Semantic Signature Matching;101
13.5;7.4 Experiments;103
13.5.1;7.4.1 Dataset;103
13.5.2;7.4.2 Selected Ontology;104
13.5.3;7.4.3 Evaluation Approach and Metrics;104
13.5.4;7.4.4 Model Evaluation Results;105
13.5.5;7.4.5 Comparison with Baseline Models;107
13.6;7.5 Conclusion;109
13.7;Appendix: Examples;110
13.8;References;115
14;8 Understanding Optimizations and Measuring Performancesof PBKDF2;116
14.1;8.1 Introduction;116
14.2;8.2 Cryptographic Preliminaries;117
14.2.1;8.2.1 PBKDF2;117
14.2.2;8.2.2 HMAC;118
14.2.3;8.2.3 SHA-1;119
14.3;8.3 Understanding Optimizations;121
14.3.1;8.3.1 PBKDF2 Optimizations;122
14.3.2;8.3.2 HMAC Optimizations;122
14.3.3;8.3.3 SHA-1 Optimizations;123
14.4;8.4 Measuring Performances;124
14.4.1;8.4.1 GPU Testing;124
14.4.2;8.4.2 CPU Testing;126
14.5;8.5 Conclusions;127
14.6;References;127
15;9 PSARV: Particle Swarm Angular Routing in VehicularAd Hoc Networks;130
15.1;9.1 Introduction;130
15.2;9.2 Dynamic Source Routing;131
15.3;9.3 Design of the PSARV Protocol;132
15.3.1;9.3.1 Swarm Movement Algorithm;132
15.3.2;9.3.2 PSARV Protocol;133
15.3.2.1;9.3.2.1 Initiate the Route Discovery;133
15.3.2.2;9.3.2.2 Moving the Received RREQ-Swarm Forward;134
15.4;9.4 Performance Evaluation;137
15.4.1;9.4.1 Simulation Parameters;137
15.4.2;9.4.2 Simulation Results;138
15.5;9.5 Conclusion;141
15.6;References;142
16;10 A Reliable Firefly-Based Routing Protocol for Efficient Communication in Vehicular Ad Hoc Networks;143
16.1;10.1 Introduction;143
16.2;10.2 Background and Related Work;144
16.2.1;10.2.1 Firefly Algorithm;145
16.2.2;10.2.2 Dynamic Source Routing;146
16.2.3;10.2.3 Related Work;146
16.3;10.3 Proposed Firefly Routing Protocol Protocol;146
16.3.1;10.3.1 EFR Route Discovery;147
16.3.2;10.3.2 EFR Technique;148
16.4;10.4 Performance Evaluation;149
16.4.1;10.4.1 Simulation Parameters;150
16.4.2;10.4.2 Simulation Results;150
16.5;10.5 Conclusion;154
16.6;References;154
17;11 Exploring the Application of Random Sampling in Spectrum Sensing;156
17.1;11.1 Introduction;156
17.2;11.2 Spectral Components Calculation Using a Random Sampling Mode;157
17.3;11.3 Spectrum Sensing Based on the Energy Detector Method;159
17.4;11.4 Results and Discussion;160
17.4.1;11.4.1 Monte Carlo Simulation for the Proposed Spectrum Sensing Approach;160
17.4.2;11.4.2 Feasibility Study of the Proposed Approach of Spectrum Sensing Based on a Real FM Radio Signal;162
17.5;11.5 Conclusion;164
17.6;References;164
18;12 White-Box Cryptography: A Time-Security Trade-Offfor the SPNbox Family;166
18.1;12.1 Introduction;166
18.2;12.2 White-Box Constructions and Attacks;168
18.3;12.3 SPACE;170
18.3.1;12.3.1 SPACE Design;170
18.3.2;12.3.2 Feistel Function as a Look-Up Table;171
18.4;12.4 The SPNbox Family;173
18.5;12.5 Our Contribution;175
18.5.1;12.5.1 Performance Evaluation;177
18.6;12.6 Conclusions and Future Works;177
18.7;References;178
19;13 CESIS: Cost-Effective and Self-Regulating Irrigation System;180
19.1;13.1 Introduction and Motivation;180
19.2;13.2 The Proposed Irrigation System (CESIS);182
19.2.1;13.2.1 Block Diagram;182
19.2.2;13.2.2 Use Case Diagram;182
19.2.3;13.2.3 Sequence Diagram;183
19.2.4;13.2.4 Activity Diagram;184
19.2.5;13.2.5 Class Diagram;184
19.3;13.3 Implementation of CESIS;186
19.3.1;13.3.1 System Modules;186
19.3.2;13.3.2 System Model and Implementation;186
19.3.3;13.3.3 The CESIS Variant;187
19.3.4;13.3.4 Implementation Results;188
19.4;13.4 Conclusions and Future Scope;189
19.4.1;13.4.1 Conclusions;190
19.4.2;13.4.2 Future Scope;192
19.5;References;193
20;14 Maximum Eigenvalue Based Detection Using Jittered Random Sampling;195
20.1;14.1 Introduction;195
20.2;14.2 Maximum Eigenvalue Detector Basis;196
20.3;14.3 Random Sampling Mode;198
20.4;14.4 Applications and Simulation Results;199
20.5;14.5 Conclusion;202
20.6;References;202
21;15 Prevention of Flooding Attacks in Mobile Ad Hoc Networks;204
21.1;15.1 Introduction;204
21.2;15.2 Related Work;205
21.3;15.3 Two-Step Protection Method;207
21.4;15.4 Simulation and Result;209
21.5;15.5 Conclusion;211
21.6;References;212
22;16 Exploiting ST-Based Representation for High Sampling Rate Dynamic Signals;213
22.1;16.1 Introduction;213
22.2;16.2 Time–Frequency Transforms;214
22.3;16.3 Discrete ST with Dual-Resolution;215
22.4;16.4 Spectrum Measurements on Real Dynamic Signals;217
22.4.1;16.4.1 Testbed Architecture;217
22.4.2;16.4.2 Data Acquisition;218
22.5;16.5 Validation and Comparison with STFT;219
22.6;16.6 Conclusion and Future Directions;224
22.7;References;226
23;17 Real-Time Spectrum Occupancy Prediction;228
23.1;17.1 Introduction;228
23.2;17.2 Spectrum Sensing Methods Overview;229
23.3;17.3 System Architecture;230
23.3.1;17.3.1 Computational Resources: Software-Defined Radio;230
23.3.2;17.3.2 Software Architecture;231
23.3.2.1;17.3.2.1 Scenario Controller;231
23.3.2.2;17.3.2.2 Experiment Scenario;232
23.3.3;17.3.3 Primary User's Engine;233
23.3.4;17.3.4 Secondary User's Engine: Cognitive Engine;234
23.3.5;17.3.5 Neural Network Configuration;236
23.4;17.4 Results;237
23.5;17.5 Conclusion;240
23.6;References;240
24;18 SCC-LBS: Secure Criss-Cross Location-Based Servicein Logistics;242
24.1;18.1 Introduction;242
24.2;18.2 Related Work;243
24.3;18.3 Features of Proposed Scheme;247
24.4;18.4 Secure Criss-Cross Location-Based Service;249
24.4.1;18.4.1 System Architecture;249
24.4.2;18.4.2 Phase 1: Identifying Location Updaters;250
24.4.3;18.4.3 Phase 2: Querying Location Updaters;252
24.4.4;18.4.4 Phase 3: Security of SCC-LBS;255
24.5;18.5 Simulation Scenario and Evaluation Metrics;257
24.6;18.6 Results and Analysis;259
24.7;18.7 Conclusion and Future Work;262
24.8;References;263
25;Index;265



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.