Buch, Englisch, Band 1700, 328 Seiten, Book, Format (B × H): 158 mm x 234 mm, Gewicht: 1060 g
Reihe: Lecture Notes in Mathematics
Göttingen Lectures
Buch, Englisch, Band 1700, 328 Seiten, Book, Format (B × H): 158 mm x 234 mm, Gewicht: 1060 g
Reihe: Lecture Notes in Mathematics
ISBN: 978-3-540-65237-3
Verlag: Springer-Verlag GmbH
These lecture notes are woven around the subject of Burgers' turbulence/KPZ model of interface growth, a study of the nonlinear parabolic equation with random initial data. The analysis is conducted mostly in the space-time domain, with less attention paid to the frequency-domain picture. However, the bibliography contains a more complete information about other directions in the field which over the last decade enjoyed a vigorous expansion. The notes are addressed to a diverse audience, including mathematicians, statisticians, physicists, fluid dynamicists and engineers, and contain both rigorous and heuristic arguments. Because of the multidisciplinary audience, the notes also include a concise exposition of some classical topics in probability theory, such as Brownian motion, Wiener polynomial chaos, etc.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik Mathematik Mathematische Analysis Differentialrechnungen und -gleichungen
- Naturwissenschaften Physik Mechanik Kontinuumsmechanik, Strömungslehre
- Mathematik | Informatik Mathematik Stochastik Wahrscheinlichkeitsrechnung
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Numerische Mathematik
- Mathematik | Informatik Mathematik Stochastik Mathematische Statistik
- Technische Wissenschaften Maschinenbau | Werkstoffkunde Technische Mechanik | Werkstoffkunde Strömungslehre
- Interdisziplinäres Wissenschaften Wissenschaften: Allgemeines Enzyklopädien, Nachschlagewerke, Wörterbücher
Weitere Infos & Material
Shock waves and the large scale structure (LSS) of the universe.- Hydrodynamic limits, nonlinear diffusions, and propagation of chaos.- Hopf-Cole formula and its asymptotic analysis.- Statistical description, parabolic approximation.- Hyperbolic approximation and inviscid limit.- Forced Burgers turbulence.- Passive tracer transport in Burgers' and related flows.- Fractal Burgers-KPZ models.