E-Book, Englisch, Band 84, 356 Seiten
Wriggers / Lenarz Biomedical Technology
1. Auflage 2018
ISBN: 978-3-319-59548-1
Verlag: Springer Nature Switzerland
Format: PDF
Kopierschutz: 1 - PDF Watermark
Modeling, Experiments and Simulation
E-Book, Englisch, Band 84, 356 Seiten
Reihe: Lecture Notes in Applied and Computational Mechanics
ISBN: 978-3-319-59548-1
Verlag: Springer Nature Switzerland
Format: PDF
Kopierschutz: 1 - PDF Watermark
This book provides an overview of new mathematical models, computational simulations and experimental tests in the field of biomedical technology, and covers a wide range of current research and challenges. The first part focuses on the virtual environment used to study biological systems at different scales and under multiphysics conditions. In turn, the second part is devoted to modeling and computational approaches in the field of cardiovascular medicine, e.g. simulation of turbulence in cardiovascular flow, modeling of artificial textile-reinforced heart valves, and new strategies for reducing the computational cost in the fluid-structure interaction modeling of hemodynamics. The book's last three parts address experimental observations, numerical tests, computational simulations, and multiscale modeling approaches to dentistry, orthopedics and otology. Written by leading experts, the book reflects the remarkable advances that have been made in the field of medicine, the life sciences, engineering and computational mechanics over the past decade, and summarizes essential tools and methods (such as virtual prototyping of medical devices, advances in medical imaging, high-performance computing and new experimental test devices) to enhance medical decision-making processes and refine implant design. The contents build upon the International Conference on Biomedical Technology 2015 (ICTB 2015), the second ECCOMAS thematic conference on Biomedical Engineering, held in Hannover, Germany in October 2015.
Autoren/Hrsg.
Weitere Infos & Material
1;Preface;6
2;Contents;8
3;Part I Biological Systems;11
4;Multiscale Aspects in the Multiphasic Modelling of Human Brain Tissue;12
4.1;1 Introduction and Motivation;12
4.2;2 Anatomic Elements of Human Brain Tissue;14
4.3;3 TPM Model of the Overall Brain-Tissue Aggregate;14
4.4;4 Microscopically Underlaid Macroscopic Constitutive Relation;16
4.4.1;4.1 Microscopic Model Settings;16
4.4.2;4.2 Macroscopic Constitutive Relation;19
4.4.3;4.3 Results and Discussion;20
4.5;References;22
5;Simulation of Steatosis Zonation in Liver Lobule---A Continuummechanical Bi-Scale, Tri-Phasic, Multi-Component Approach;23
5.1;1 Introduction;23
5.2;2 Glucose and Fat Metabolism;26
5.3;3 Numerical Example: Comparison of Different Assumptions for the Perfusion Coupled to the Metabolism;28
5.3.1;3.1 Discussion;30
5.4;References;40
6;3 Nano-Mechanical Tensile Behavior of the SPTA1 Gene in the Presence of Hereditary Hemolytic Anemia-Related Point Mutations;42
6.1;Abstract;42
6.2;1 Introduction;43
6.3;2 Spectrin Structure;44
6.4;3 Materials and Methods;45
6.5;4 Results;46
6.6;5 Discussion;53
6.7;Acknowledgements;53
6.8;References;53
7;The Choice of a Performance Indicator of Release in Transdermal Drug Delivery Systems;55
7.1;1 Introduction;55
7.2;2 The Concept of an Effective Time Constant: Definition and Applications;58
7.3;3 A One-Layer Model for TDD;60
7.4;4 Computation of the ETC for a One-Layer Skin Model;62
7.5;5 A Multi-layer Model for TDD;63
7.6;6 Computation of the ETC for a Multi-layer Skin Model;65
7.7;7 Computational Results;66
7.8;8 Conclusions;68
7.9;References;69
8;Part II Cardiovascular Medicine;71
9;5 Multiscale Multiphysic Approaches in Vascular Hemodynamics;72
9.1;Abstract;72
9.2;1 Introduction;72
9.3;2 Geometry Creation and General Simulation Settings;73
9.4;3 Boundary Conditions;74
9.4.1;3.1 Lumped Parameter Modeling;75
9.4.2;3.2 0-D/3-D Coupling;75
9.5;4 Fluid-Structure-Interaction;75
9.5.1;4.1 0-D/3-D Coupling of FSI Simulations;76
9.6;5 Examples;77
9.6.1;5.1 An FSI Model of Cardiopulmonary Bypass with Cerebral Autoregulation;77
9.6.2;5.2 A CFD Model of VAD Support Using Closed-Loop Multiscale Simulations to Evaluate Various Cannulation Strategies;77
9.6.3;5.3 A Numerical Framework to Investigate Hemodynamics During Endovascular Mechanical Recanalization in Acute Stroke;79
9.7;6 Conclusion;80
9.8;References;81
10;Heart Valve Flow Computation with the Space--Time Slip Interface Topology Change (ST-SI-TC) Method and Isogeometric Analysis (IGA);82
10.1;1 Introduction;83
10.2;2 ST-VMS and ST-SI Formulations;86
10.2.1;2.1 ST-VMS Formulation;86
10.2.2;2.2 ST-SI Formulation;87
10.3;3 ST-SI-TC-IGA Method;89
10.3.1;3.1 ST-SI Method;89
10.3.2;3.2 ST-TC Method;90
10.3.3;3.3 ST-IGA Method;90
10.3.4;3.4 Integration of the ST-SI, ST-TC and ST-IGA Methods;90
10.4;4 Aortic-Valve Model;93
10.4.1;4.1 Geometry;93
10.4.2;4.2 Mesh and Flow Conditions;93
10.4.3;4.3 Computational Conditions;94
10.4.4;4.4 Results;96
10.5;5 Concluding Remarks;96
10.6;References;99
11;Estimation of Element-Based Zero-Stress State in Arterial FSI Computations with Isogeometric Wall Discretization;105
11.1;1 Introduction;106
11.2;2 Element-Based Total Lagrangian (EBTL) Method;107
11.2.1;2.1 EBZSS;107
11.2.2;2.2 NURBS Basis Functions;108
11.2.3;2.3 EBZSS Representation with NURBS Basis Functions;110
11.3;3 Modeling the Artery ZSS: Straight-Tube ZSS Template;112
11.4;4 2D Test Computations;113
11.4.1;4.1 Meshes;113
11.4.2;4.2 Curvature Matching in the ZSS;116
11.4.3;4.3 Computational Results;118
11.5;5 Concluding Remarks;122
11.6;References;123
12;Fluid-Structure Interaction Modeling in 3D Cerebral Arteries and Aneurysms;127
12.1;1 Introduction;127
12.2;2 Fluid-Structure Interaction: Mathematical Formulation;129
12.2.1;2.1 Partitioned Algorithm;132
12.3;3 Fictitious Methods;133
12.3.1;3.1 Analysis of an Idealized Artery Model;134
12.4;4 Fractional-Order Viscoelastic Model for Aneurysm Walls;136
12.5;5 Numerical Simulations;140
12.5.1;5.1 Blood Flow in an Artery;140
12.5.2;5.2 Blood Flow in a Patient-Specific Aneurysm;144
12.6;6 Conclusion and Future Work;147
12.7;References;148
13;Large-Eddy Simulation of Turbulence in Cardiovascular Flows;151
13.1;1 Introduction;151
13.2;2 LES Requirements;153
13.3;3 The FDA Medical Device Test Case;155
13.3.1;3.1 Simulations with Perturbation-Free Inlet;156
13.3.2;3.2 Small Perturbations at the Inlet;157
13.4;4 Intracardiac Turbulence;159
13.4.1;4.1 Method;159
13.4.2;4.2 Results;160
13.4.3;4.3 Role of SGS Model;161
13.4.4;4.4 Discussion;163
13.5;5 Cardiac Valves;163
13.6;6 Conclusion;168
13.7;References;169
14;Computational Comparison Between Newtonian and Non-Newtonian Blood Rheologies in Stenotic Vessels;172
14.1;1 Introduction;172
14.2;2 Materials and Methods;174
14.2.1;2.1 Computational Domains and Mesh Generation;174
14.2.2;2.2 Mathematical and Numerical Methods;175
14.3;3 Results;177
14.3.1;3.1 Carotid Arteries;177
14.3.2;3.2 Coronary Arteries;181
14.4;4 Conclusions;183
14.5;References;184
15;Artificial Textile Reinforced Tubular Aortic Heart Valves---Multi-scale Modelling and Experimental Validation;187
15.1;1 Introduction;188
15.1.1;1.1 Motivation;188
15.1.2;1.2 Previous Work;188
15.1.3;1.3 Present Work;191
15.2;2 Bio-Engineered Aortic Heart Valves with a Tubular Leaflet Design;192
15.3;3 Experiments;193
15.4;4 Finite Element Simulations;194
15.4.1;4.1 Multi-scale Modelling;194
15.4.2;4.2 Fibre Level Structural Model;196
15.4.3;4.3 Knit Level Structural Model;197
15.4.4;4.4 Textile Level Structural Model;198
15.4.5;4.5 Virtual Textile Composite;200
15.4.6;4.6 Macro Level Heart Valve Model;201
15.5;5 Material Models;202
15.5.1;5.1 Transversely Isotropic Material Model;202
15.5.2;5.2 Arruda Boyce Material Model;202
15.5.3;5.3 Fung's Orthotropic Material Model;203
15.6;6 Results and Discussions;204
15.6.1;6.1 Characterization to Experimental Results;204
15.6.2;6.2 Numerical Results;205
15.6.3;6.3 Experimental Validation and Comparison;210
15.6.4;6.4 Heart Valve Model;211
15.7;7 Conclusion and Outlook;214
15.8;References;215
16;Preliminary Monolithic Fluid Structure Interaction Model for Ventricle Contraction;218
16.1;1 Introduction;218
16.2;2 Mathematical Model;219
16.2.1;2.1 The Coupled Fluid-Structure Problem;221
16.3;3 Numerical Penalty-Projection Algorithm;225
16.4;4 Numerical Results;227
16.4.1;4.1 Ventricle Model;227
16.4.2;4.2 FSI Ventricle Simulations;229
16.5;5 Conclusion;231
16.6;References;232
17;The Biomechanical Rupture Risk Assessment of Abdominal Aortic Aneurysms---Method and Clinical Relevance;233
17.1;1 Introduction;233
17.2;2 The Basic Concept of the Biomechanical Rupture Risk Assessment (BRRA);234
17.2.1;2.1 Work Flow and Diagnostic Information;234
17.2.2;2.2 Complexity Versus Uncertainty of Model Predictions;236
17.3;3 AAA Tissue Characterization;237
17.3.1;3.1 Properties of the Normal Aorta;237
17.3.2;3.2 Aneurysm-Related Alteration of the Aorta;239
17.3.3;3.3 Modeling Frameworks;240
17.4;4 Clinical Validation;243
17.4.1;4.1 Quasi-static BRRA Computations;243
17.4.2;4.2 AAA Growth Prediction;245
17.5;5 Conclusions;246
17.6;References;247
18;Part III Dentistry;254
19;A Deeper Insight of a Multi-dimensional Continuum Biofilm Growth Model: Experimental Observation and Parameter Studies;255
19.1;1 Introduction;256
19.2;2 Mathematical Model;257
19.2.1;2.1 Governing Equations;257
19.2.2;2.2 Transformation Processes;258
19.3;3 Numerical Strategy;259
19.4;4 Biofilm Height After 24h: Experimental Observation and Numerical Simulation;259
19.4.1;4.1 Experiment Setup;259
19.4.2;4.2 Numerical Simulation and Results;260
19.5;5 Parameter Study of the Mathematical Model;261
19.5.1;5.1 Influence of Maximum Growth Rate ?;262
19.5.2;5.2 Influence of Monod Half-Rate Constant ks;264
19.5.3;5.3 Influence of Inactivation Rate ?i;265
19.5.4;5.4 Influence of Biofilm Yield Y;265
19.6;6 Summary and Conclusion;268
19.7;References;269
20;Multiscale Experimental and Computational Investigation of Nature's Design Principle of Hierarchies in Dental Enamel;271
20.1;1 Introduction;272
20.2;2 Microstructural Characteristics of Bovine Enamel;273
20.3;3 Multiscale Experimental Study of Mechanical Behavior of Dental Enamel;274
20.4;4 Multiscale Computational Simulation of Damage Behavior of Dental Enamel;276
20.4.1;4.1 Continuum Damage Model for Mineral Fiber and Protein;276
20.4.2;4.2 Protein--Mineral Interface;279
20.4.3;4.3 3D Computational Model of the Microstructure;280
20.4.4;4.4 Simulation Results of First and Second Hierarchy Levels;282
20.4.5;4.5 Influence of Initial Flaw at Different Hierarchical Levels;284
20.5;5 Conclusions;287
20.6;References;288
21;Part IV Orthopaedics;290
22;16 Challenges in Total Hip Arthroplasty;291
22.1;Abstract;291
22.2;1 Challenges of Total Hip Arthroplasty (THA);291
22.2.1;1.1 Changes in Indication for Implantation of a Total Hip Arthroplasty;291
22.3;2 Influence of Demographic Changes on Osteoarthritis of the Hip;292
22.4;3 Joint Replacement Registers;293
22.5;4 Challenges of THA During Different Lifetime Periods;293
22.6;5 Challenges of Revision THA;297
22.7;6 Patients and Methods;298
22.8;7 Results;302
22.9;8 Discussion;303
22.10;9 Conclusion;305
22.11;References;306
23;Personalized Orthopedic Trauma Surgery by Applied Clinical Mechanics;309
23.1;1 Introduction;309
23.2;2 Methods;311
23.2.1;2.1 Preparation and Tomography of the Fracture Model;311
23.2.2;2.2 Image Processing;311
23.2.3;2.3 Mesh Generation;312
23.2.4;2.4 Material Assignment;315
23.2.5;2.5 Set-up of the Numerical Simulations;315
23.2.6;2.6 Optimization Strategy;316
23.3;3 Results and Discussion;317
23.3.1;3.1 Numerical Simulation with Perfect Bone Formation in the Pseudarthrosis Area---Best-Case Scenario;319
23.3.2;3.2 Numerical Simulation with Totally Absent Bone Formation in the Pseudarthrosis Area---Worst-Case Scenario;321
23.3.3;3.3 Impact of the Optimization Parameter on the Results;325
23.4;4 Conclusion and Outlook;325
23.5;5 Conflict of Interest;326
23.6;References;326
24;Part V Otology;328
25;18 Measurement of Intracochlear Pressure Differences in Human Temporal Bones Using an Off-the-Shelf Pressure Sensor;329
25.1;Abstract;329
25.2;1 Introduction;330
25.3;2 Materials and Methods;331
25.3.1;2.1 TB Preparation;331
25.3.2;2.2 Experimental Setup;331
25.3.3;2.3 Intracochlear Pressure Measurement;331
25.3.4;2.4 Vibration Measurement;332
25.3.5;2.5 Experimental Procedure;332
25.3.6;2.6 Signal Generation, Acquisition and Analysis;333
25.4;3 Results;334
25.4.1;3.1 SFP Vibration Responses Before and After Cochleostomy;334
25.4.2;3.2 Sound Pressures in Scala Vestibuli and Scala Tympani;334
25.4.3;3.3 Intracochlear Pressure Differences;336
25.5;4 Discussion;337
25.5.1;4.1 Effect of Transducer Insertion on SFP Vibration Responses;337
25.5.2;4.2 Comparison to Previous Work with Custom-Made Pressure Sensors;338
25.6;5 Conclusion;340
25.7;References;340
26;Development of a Parametric Model of the Electrically Stimulated Auditory Nerve;343
26.1;1 Introduction;344
26.2;2 Methods;344
26.2.1;2.1 3D Cochlear Geometry and Finite Element Model;344
26.2.2;2.2 Auditory Nerve Model;345
26.2.3;2.3 Evoked Compound Action Potentials (ECAPs);349
26.2.4;2.4 Parameterization of the Auditory Nerve Model;350
26.3;3 Results;352
26.3.1;3.1 Simulation of the ECAP Using the Forward Masking Technique;352
26.3.2;3.2 Effects of Different Amounts of Nerve Degeneration and Nerve Density on AGF;353
26.4;4 Discussion;353
26.5;References;354




