Buch, Englisch, 265 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 582 g
Reihe: EAI/Springer Innovations in Communication and Computing
Buch, Englisch, 265 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 582 g
Reihe: EAI/Springer Innovations in Communication and Computing
ISBN: 978-3-030-85558-1
Verlag: Springer Nature Switzerland
This book presents how federated learning helps to understand and learn from user activity in Internet of Things (IoT) applications while protecting user privacy. The authors first show how federated learning provides a unique way to build personalized models using data without intruding on users’ privacy. The authors then provide a comprehensive survey of state-of-the-art research on federated learning, giving the reader a general overview of the field. The book also investigates how a personalized federated learning framework is needed in cloud-edge architecture as well as in wireless-edge architecture for intelligent IoT applications. To cope with the heterogeneity issues in IoT environments, the book investigates emerging personalized federated learning methods that are able to mitigate the negative effects caused by heterogeneities in different aspects. The book provides case studies of IoT based human activity recognition to demonstrate the effectiveness of personalized federatedlearning for intelligent IoT applications, as well as multiple controller design and system analysis tools including model predictive control, linear matrix inequalities, optimal control, etc. This unique and complete co-design framework will benefit researchers, graduate students and engineers in the fields of control theory and engineering.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Technische Wissenschaften Energietechnik | Elektrotechnik Elektrotechnik
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz
- Mathematik | Informatik EDV | Informatik Daten / Datenbanken Data Mining
- Mathematik | Informatik EDV | Informatik Informatik Mensch-Maschine-Interaktion Ambient Intelligence, RFID, Internet der Dinge
- Technische Wissenschaften Elektronik | Nachrichtentechnik Nachrichten- und Kommunikationstechnik
Weitere Infos & Material
Chapter 1. Introduction to Federated Learning.- Chapter 2. Federated Learning for IoT Devices.- Chapter 3. Personalized Federated Learning.- Chapter 4. Federated Learning for an IoT Application.- Chapter 5. Some observations on the behaviour of Federated Learning.- Chapter 6. Federated Learning with Cooperating Devices: A Consensus Approach.- Chapter 7. A prospective study of federated machine learning in medical image fusion.- Chapter 8. Communication-Efficient Federated Learning in Wireless-Edge Architecture.- Chapter 9. Towards Ubiquitous AI in 6G with Federated Learning.- Chapter 10. Federated Learning using Tensor Flow.- Chapter 11. Cyber Security and privacy of Connected and Automated Vehicles (CAVs) based Federated Learning: Challenges, Opportunities and Open Issues.- Chapter 12. Security Issues & Solutions for Healthcare Informatics.- Chapter 13. Federated Learning: Challenges, Methods, and Future Directions.- Chapter 14. Quantum Federated Learning for Wireless Communications.- Chapter 15. Federated machine learning with data mining in health care.- Chapter 16. Federated Learning for data mining in Healthcare.