E-Book, Englisch, Band 219, 806 Seiten, eBook
Yager / Liu Classic Works of the Dempster-Shafer Theory of Belief Functions
Erscheinungsjahr 2008
ISBN: 978-3-540-44792-4
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, Band 219, 806 Seiten, eBook
Reihe: Studies in Fuzziness and Soft Computing
ISBN: 978-3-540-44792-4
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
Zielgruppe
Research
Autoren/Hrsg.
Weitere Infos & Material
Classic Works of the Dempster-Shafer Theory of Belief Functions: An Introduction.- New Methods for Reasoning Towards Posterior Distributions Based on Sample Data.- Upper and Lower Probabilities Induced by a Multivalued Mapping.- A Generalization of Bayesian Inference.- On Random Sets and Belief Functions.- Non-Additive Probabilities in the Work of Bernoulli and Lambert.- Allocations of Probability.- Computational Methods for A Mathematical Theory of Evidence.- Constructive Probability.- Belief Functions and Parametric Models.- Entropy and Specificity in a Mathematical Theory of Evidence.- A Method for Managing Evidential Reasoning in a Hierarchical Hypothesis Space.- Languages and Designs for Probability Judgment.- A Set-Theoretic View of Belief Functions.- Weights of Evidence and Internal Conflict for Support Functions.- A Framework for Evidential-Reasoning Systems.- Epistemic Logics, Probability, and the Calculus of Evidence.- Implementing Dempster’s Rule for Hierarchical Evidence.- Some Characterizations of Lower Probabilities and Other Monotone Capacities through the use of Möbius Inversion.- Axioms for Probability and Belief-Function Propagation.- Generalizing the Dempster–Shafer Theory to Fuzzy Sets.- Bayesian Updating and Belief Functions.- Belief-Function Formulas for Audit Risk.- Decision Making Under Dempster–Shafer Uncertainties.- Belief Functions: The Disjunctive Rule of Combination and the Generalized Bayesian Theorem.- Representation of Evidence by Hints.- Combining the Results of Several Neural Network Classifiers.- The Transferable Belief Model.- A k-Nearest Neighbor Classification Rule Based on Dempster-Shafer Theory.- Logicist Statistics II: Inference.